Whakaoti mō x
x=\frac{8}{9}\approx 0.888888889
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=9x\left(1-x\right)
Whakareatia te 3 ki te 3, ka 9.
x=9x-9x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 9x ki te 1-x.
x-9x=-9x^{2}
Tangohia te 9x mai i ngā taha e rua.
-8x=-9x^{2}
Pahekotia te x me -9x, ka -8x.
-8x+9x^{2}=0
Me tāpiri te 9x^{2} ki ngā taha e rua.
x\left(-8+9x\right)=0
Tauwehea te x.
x=0 x=\frac{8}{9}
Hei kimi otinga whārite, me whakaoti te x=0 me te -8+9x=0.
x=9x\left(1-x\right)
Whakareatia te 3 ki te 3, ka 9.
x=9x-9x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 9x ki te 1-x.
x-9x=-9x^{2}
Tangohia te 9x mai i ngā taha e rua.
-8x=-9x^{2}
Pahekotia te x me -9x, ka -8x.
-8x+9x^{2}=0
Me tāpiri te 9x^{2} ki ngā taha e rua.
9x^{2}-8x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -8 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±8}{2\times 9}
Tuhia te pūtakerua o te \left(-8\right)^{2}.
x=\frac{8±8}{2\times 9}
Ko te tauaro o -8 ko 8.
x=\frac{8±8}{18}
Whakareatia 2 ki te 9.
x=\frac{16}{18}
Nā, me whakaoti te whārite x=\frac{8±8}{18} ina he tāpiri te ±. Tāpiri 8 ki te 8.
x=\frac{8}{9}
Whakahekea te hautanga \frac{16}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{0}{18}
Nā, me whakaoti te whārite x=\frac{8±8}{18} ina he tango te ±. Tango 8 mai i 8.
x=0
Whakawehe 0 ki te 18.
x=\frac{8}{9} x=0
Kua oti te whārite te whakatau.
x=9x\left(1-x\right)
Whakareatia te 3 ki te 3, ka 9.
x=9x-9x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 9x ki te 1-x.
x-9x=-9x^{2}
Tangohia te 9x mai i ngā taha e rua.
-8x=-9x^{2}
Pahekotia te x me -9x, ka -8x.
-8x+9x^{2}=0
Me tāpiri te 9x^{2} ki ngā taha e rua.
9x^{2}-8x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{9x^{2}-8x}{9}=\frac{0}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}-\frac{8}{9}x=\frac{0}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}-\frac{8}{9}x=0
Whakawehe 0 ki te 9.
x^{2}-\frac{8}{9}x+\left(-\frac{4}{9}\right)^{2}=\left(-\frac{4}{9}\right)^{2}
Whakawehea te -\frac{8}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{4}{9}. Nā, tāpiria te pūrua o te -\frac{4}{9} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{8}{9}x+\frac{16}{81}=\frac{16}{81}
Pūruatia -\frac{4}{9} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{4}{9}\right)^{2}=\frac{16}{81}
Tauwehea x^{2}-\frac{8}{9}x+\frac{16}{81}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{9}\right)^{2}}=\sqrt{\frac{16}{81}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{4}{9}=\frac{4}{9} x-\frac{4}{9}=-\frac{4}{9}
Whakarūnātia.
x=\frac{8}{9} x=0
Me tāpiri \frac{4}{9} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}