Whakaoti mō x, y
x = \frac{117}{2} = 58\frac{1}{2} = 58.5
y = \frac{63}{2} = 31\frac{1}{2} = 31.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+36-3y=0
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
x-3y=-36
Tangohia te 36 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x+y=90,x-3y=-36
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=90
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+90
Me tango y mai i ngā taha e rua o te whārite.
-y+90-3y=-36
Whakakapia te -y+90 mō te x ki tērā atu whārite, x-3y=-36.
-4y+90=-36
Tāpiri -y ki te -3y.
-4y=-126
Me tango 90 mai i ngā taha e rua o te whārite.
y=\frac{63}{2}
Whakawehea ngā taha e rua ki te -4.
x=-\frac{63}{2}+90
Whakaurua te \frac{63}{2} mō y ki x=-y+90. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{117}{2}
Tāpiri 90 ki te -\frac{63}{2}.
x=\frac{117}{2},y=\frac{63}{2}
Kua oti te pūnaha te whakatau.
x+36-3y=0
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
x-3y=-36
Tangohia te 36 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x+y=90,x-3y=-36
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}90\\-36\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-3\end{matrix}\right))\left(\begin{matrix}1&1\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-3\end{matrix}\right))\left(\begin{matrix}90\\-36\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-3\end{matrix}\right))\left(\begin{matrix}90\\-36\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-3\end{matrix}\right))\left(\begin{matrix}90\\-36\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-1}&-\frac{1}{-3-1}\\-\frac{1}{-3-1}&\frac{1}{-3-1}\end{matrix}\right)\left(\begin{matrix}90\\-36\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{4}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}90\\-36\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 90+\frac{1}{4}\left(-36\right)\\\frac{1}{4}\times 90-\frac{1}{4}\left(-36\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{117}{2}\\\frac{63}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{117}{2},y=\frac{63}{2}
Tangohia ngā huānga poukapa x me y.
x+36-3y=0
Whakaarohia te whārite tuarua. Tangohia te 3y mai i ngā taha e rua.
x-3y=-36
Tangohia te 36 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x+y=90,x-3y=-36
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+y+3y=90+36
Me tango x-3y=-36 mai i x+y=90 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+3y=90+36
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4y=90+36
Tāpiri y ki te 3y.
4y=126
Tāpiri 90 ki te 36.
y=\frac{63}{2}
Whakawehea ngā taha e rua ki te 4.
x-3\times \frac{63}{2}=-36
Whakaurua te \frac{63}{2} mō y ki x-3y=-36. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{189}{2}=-36
Whakareatia -3 ki te \frac{63}{2}.
x=\frac{117}{2}
Me tāpiri \frac{189}{2} ki ngā taha e rua o te whārite.
x=\frac{117}{2},y=\frac{63}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}