Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=9,3x+y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+9
Me tango y mai i ngā taha e rua o te whārite.
3\left(-y+9\right)+y=2
Whakakapia te -y+9 mō te x ki tērā atu whārite, 3x+y=2.
-3y+27+y=2
Whakareatia 3 ki te -y+9.
-2y+27=2
Tāpiri -3y ki te y.
-2y=-25
Me tango 27 mai i ngā taha e rua o te whārite.
y=\frac{25}{2}
Whakawehea ngā taha e rua ki te -2.
x=-\frac{25}{2}+9
Whakaurua te \frac{25}{2} mō y ki x=-y+9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{7}{2}
Tāpiri 9 ki te -\frac{25}{2}.
x=-\frac{7}{2},y=\frac{25}{2}
Kua oti te pūnaha te whakatau.
x+y=9,3x+y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}9\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}9\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}9\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3}&-\frac{1}{1-3}\\-\frac{3}{1-3}&\frac{1}{1-3}\end{matrix}\right)\left(\begin{matrix}9\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}9\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 9+\frac{1}{2}\times 2\\\frac{3}{2}\times 9-\frac{1}{2}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{2}\\\frac{25}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{7}{2},y=\frac{25}{2}
Tangohia ngā huānga poukapa x me y.
x+y=9,3x+y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-3x+y-y=9-2
Me tango 3x+y=2 mai i x+y=9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x-3x=9-2
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2x=9-2
Tāpiri x ki te -3x.
-2x=7
Tāpiri 9 ki te -2.
x=-\frac{7}{2}
Whakawehea ngā taha e rua ki te -2.
3\left(-\frac{7}{2}\right)+y=2
Whakaurua te -\frac{7}{2} mō x ki 3x+y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-\frac{21}{2}+y=2
Whakareatia 3 ki te -\frac{7}{2}.
y=\frac{25}{2}
Me tāpiri \frac{21}{2} ki ngā taha e rua o te whārite.
x=-\frac{7}{2},y=\frac{25}{2}
Kua oti te pūnaha te whakatau.