Whakaoti mō x, y
x=5
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2y-x=1
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
x+y=8,-x+2y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+8
Me tango y mai i ngā taha e rua o te whārite.
-\left(-y+8\right)+2y=1
Whakakapia te -y+8 mō te x ki tērā atu whārite, -x+2y=1.
y-8+2y=1
Whakareatia -1 ki te -y+8.
3y-8=1
Tāpiri y ki te 2y.
3y=9
Me tāpiri 8 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te 3.
x=-3+8
Whakaurua te 3 mō y ki x=-y+8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=5
Tāpiri 8 ki te -3.
x=5,y=3
Kua oti te pūnaha te whakatau.
2y-x=1
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
x+y=8,-x+2y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\-1&2\end{matrix}\right))\left(\begin{matrix}1&1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&2\end{matrix}\right))\left(\begin{matrix}8\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\-1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&2\end{matrix}\right))\left(\begin{matrix}8\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&2\end{matrix}\right))\left(\begin{matrix}8\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-1\right)}&-\frac{1}{2-\left(-1\right)}\\-\frac{-1}{2-\left(-1\right)}&\frac{1}{2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}8\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&-\frac{1}{3}\\\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}8\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 8-\frac{1}{3}\\\frac{1}{3}\times 8+\frac{1}{3}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=3
Tangohia ngā huānga poukapa x me y.
2y-x=1
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
x+y=8,-x+2y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-x-y=-8,-x+2y=1
Kia ōrite ai a x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-x+x-y-2y=-8-1
Me tango -x+2y=1 mai i -x-y=-8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y-2y=-8-1
Tāpiri -x ki te x. Ka whakakore atu ngā kupu -x me x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3y=-8-1
Tāpiri -y ki te -2y.
-3y=-9
Tāpiri -8 ki te -1.
y=3
Whakawehea ngā taha e rua ki te -3.
-x+2\times 3=1
Whakaurua te 3 mō y ki -x+2y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x+6=1
Whakareatia 2 ki te 3.
-x=-5
Me tango 6 mai i ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua ki te -1.
x=5,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}