Whakaoti mō x, y
x=39
y=35
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=74,40x+60y=3660
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=74
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+74
Me tango y mai i ngā taha e rua o te whārite.
40\left(-y+74\right)+60y=3660
Whakakapia te -y+74 mō te x ki tērā atu whārite, 40x+60y=3660.
-40y+2960+60y=3660
Whakareatia 40 ki te -y+74.
20y+2960=3660
Tāpiri -40y ki te 60y.
20y=700
Me tango 2960 mai i ngā taha e rua o te whārite.
y=35
Whakawehea ngā taha e rua ki te 20.
x=-35+74
Whakaurua te 35 mō y ki x=-y+74. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=39
Tāpiri 74 ki te -35.
x=39,y=35
Kua oti te pūnaha te whakatau.
x+y=74,40x+60y=3660
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\40&60\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}74\\3660\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\40&60\end{matrix}\right))\left(\begin{matrix}1&1\\40&60\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&60\end{matrix}\right))\left(\begin{matrix}74\\3660\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\40&60\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&60\end{matrix}\right))\left(\begin{matrix}74\\3660\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&60\end{matrix}\right))\left(\begin{matrix}74\\3660\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{60}{60-40}&-\frac{1}{60-40}\\-\frac{40}{60-40}&\frac{1}{60-40}\end{matrix}\right)\left(\begin{matrix}74\\3660\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-\frac{1}{20}\\-2&\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}74\\3660\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 74-\frac{1}{20}\times 3660\\-2\times 74+\frac{1}{20}\times 3660\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}39\\35\end{matrix}\right)
Mahia ngā tātaitanga.
x=39,y=35
Tangohia ngā huānga poukapa x me y.
x+y=74,40x+60y=3660
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
40x+40y=40\times 74,40x+60y=3660
Kia ōrite ai a x me 40x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 40 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
40x+40y=2960,40x+60y=3660
Whakarūnātia.
40x-40x+40y-60y=2960-3660
Me tango 40x+60y=3660 mai i 40x+40y=2960 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
40y-60y=2960-3660
Tāpiri 40x ki te -40x. Ka whakakore atu ngā kupu 40x me -40x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-20y=2960-3660
Tāpiri 40y ki te -60y.
-20y=-700
Tāpiri 2960 ki te -3660.
y=35
Whakawehea ngā taha e rua ki te -20.
40x+60\times 35=3660
Whakaurua te 35 mō y ki 40x+60y=3660. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
40x+2100=3660
Whakareatia 60 ki te 35.
40x=1560
Me tango 2100 mai i ngā taha e rua o te whārite.
x=39
Whakawehea ngā taha e rua ki te 40.
x=39,y=35
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}