Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=70,4x+2y=232
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=70
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+70
Me tango y mai i ngā taha e rua o te whārite.
4\left(-y+70\right)+2y=232
Whakakapia te -y+70 mō te x ki tērā atu whārite, 4x+2y=232.
-4y+280+2y=232
Whakareatia 4 ki te -y+70.
-2y+280=232
Tāpiri -4y ki te 2y.
-2y=-48
Me tango 280 mai i ngā taha e rua o te whārite.
y=24
Whakawehea ngā taha e rua ki te -2.
x=-24+70
Whakaurua te 24 mō y ki x=-y+70. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=46
Tāpiri 70 ki te -24.
x=46,y=24
Kua oti te pūnaha te whakatau.
x+y=70,4x+2y=232
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}70\\232\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}1&1\\4&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}70\\232\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}70\\232\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&2\end{matrix}\right))\left(\begin{matrix}70\\232\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-4}&-\frac{1}{2-4}\\-\frac{4}{2-4}&\frac{1}{2-4}\end{matrix}\right)\left(\begin{matrix}70\\232\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{2}\\2&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}70\\232\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-70+\frac{1}{2}\times 232\\2\times 70-\frac{1}{2}\times 232\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}46\\24\end{matrix}\right)
Mahia ngā tātaitanga.
x=46,y=24
Tangohia ngā huānga poukapa x me y.
x+y=70,4x+2y=232
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+4y=4\times 70,4x+2y=232
Kia ōrite ai a x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
4x+4y=280,4x+2y=232
Whakarūnātia.
4x-4x+4y-2y=280-232
Me tango 4x+2y=232 mai i 4x+4y=280 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-2y=280-232
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=280-232
Tāpiri 4y ki te -2y.
2y=48
Tāpiri 280 ki te -232.
y=24
Whakawehea ngā taha e rua ki te 2.
4x+2\times 24=232
Whakaurua te 24 mō y ki 4x+2y=232. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+48=232
Whakareatia 2 ki te 24.
4x=184
Me tango 48 mai i ngā taha e rua o te whārite.
x=46
Whakawehea ngā taha e rua ki te 4.
x=46,y=24
Kua oti te pūnaha te whakatau.