Whakaoti mō x, y
x=11
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=7,5x+12y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+7
Me tango y mai i ngā taha e rua o te whārite.
5\left(-y+7\right)+12y=7
Whakakapia te -y+7 mō te x ki tērā atu whārite, 5x+12y=7.
-5y+35+12y=7
Whakareatia 5 ki te -y+7.
7y+35=7
Tāpiri -5y ki te 12y.
7y=-28
Me tango 35 mai i ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua ki te 7.
x=-\left(-4\right)+7
Whakaurua te -4 mō y ki x=-y+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4+7
Whakareatia -1 ki te -4.
x=11
Tāpiri 7 ki te 4.
x=11,y=-4
Kua oti te pūnaha te whakatau.
x+y=7,5x+12y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\5&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\5&12\end{matrix}\right))\left(\begin{matrix}1&1\\5&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&12\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\5&12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&12\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&12\end{matrix}\right))\left(\begin{matrix}7\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{12-5}&-\frac{1}{12-5}\\-\frac{5}{12-5}&\frac{1}{12-5}\end{matrix}\right)\left(\begin{matrix}7\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7}&-\frac{1}{7}\\-\frac{5}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}7\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7}\times 7-\frac{1}{7}\times 7\\-\frac{5}{7}\times 7+\frac{1}{7}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=11,y=-4
Tangohia ngā huānga poukapa x me y.
x+y=7,5x+12y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x+5y=5\times 7,5x+12y=7
Kia ōrite ai a x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
5x+5y=35,5x+12y=7
Whakarūnātia.
5x-5x+5y-12y=35-7
Me tango 5x+12y=7 mai i 5x+5y=35 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5y-12y=35-7
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=35-7
Tāpiri 5y ki te -12y.
-7y=28
Tāpiri 35 ki te -7.
y=-4
Whakawehea ngā taha e rua ki te -7.
5x+12\left(-4\right)=7
Whakaurua te -4 mō y ki 5x+12y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-48=7
Whakareatia 12 ki te -4.
5x=55
Me tāpiri 48 ki ngā taha e rua o te whārite.
x=11
Whakawehea ngā taha e rua ki te 5.
x=11,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}