Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=7,2x+y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+7
Me tango y mai i ngā taha e rua o te whārite.
2\left(-y+7\right)+y=3
Whakakapia te -y+7 mō te x ki tērā atu whārite, 2x+y=3.
-2y+14+y=3
Whakareatia 2 ki te -y+7.
-y+14=3
Tāpiri -2y ki te y.
-y=-11
Me tango 14 mai i ngā taha e rua o te whārite.
y=11
Whakawehea ngā taha e rua ki te -1.
x=-11+7
Whakaurua te 11 mō y ki x=-y+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4
Tāpiri 7 ki te -11.
x=-4,y=11
Kua oti te pūnaha te whakatau.
x+y=7,2x+y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}1&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&1\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2}&-\frac{1}{1-2}\\-\frac{2}{1-2}&\frac{1}{1-2}\end{matrix}\right)\left(\begin{matrix}7\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}7\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7+3\\2\times 7-3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\11\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=11
Tangohia ngā huānga poukapa x me y.
x+y=7,2x+y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-2x+y-y=7-3
Me tango 2x+y=3 mai i x+y=7 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x-2x=7-3
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-x=7-3
Tāpiri x ki te -2x.
-x=4
Tāpiri 7 ki te -3.
x=-4
Whakawehea ngā taha e rua ki te -1.
2\left(-4\right)+y=3
Whakaurua te -4 mō x ki 2x+y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-8+y=3
Whakareatia 2 ki te -4.
y=11
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=-4,y=11
Kua oti te pūnaha te whakatau.