Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=7,2x+3y=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+7
Me tango y mai i ngā taha e rua o te whārite.
2\left(-y+7\right)+3y=18
Whakakapia te -y+7 mō te x ki tērā atu whārite, 2x+3y=18.
-2y+14+3y=18
Whakareatia 2 ki te -y+7.
y+14=18
Tāpiri -2y ki te 3y.
y=4
Me tango 14 mai i ngā taha e rua o te whārite.
x=-4+7
Whakaurua te 4 mō y ki x=-y+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Tāpiri 7 ki te -4.
x=3,y=4
Kua oti te pūnaha te whakatau.
x+y=7,2x+3y=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}7\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}7\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}7\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{1}{3-2}\end{matrix}\right)\left(\begin{matrix}7\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}7\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 7-18\\-2\times 7+18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=4
Tangohia ngā huānga poukapa x me y.
x+y=7,2x+3y=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2y=2\times 7,2x+3y=18
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x+2y=14,2x+3y=18
Whakarūnātia.
2x-2x+2y-3y=14-18
Me tango 2x+3y=18 mai i 2x+2y=14 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-3y=14-18
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=14-18
Tāpiri 2y ki te -3y.
-y=-4
Tāpiri 14 ki te -18.
y=4
Whakawehea ngā taha e rua ki te -1.
2x+3\times 4=18
Whakaurua te 4 mō y ki 2x+3y=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+12=18
Whakareatia 3 ki te 4.
2x=6
Me tango 12 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 2.
x=3,y=4
Kua oti te pūnaha te whakatau.