Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=69,7x+y=87
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=69
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+69
Me tango y mai i ngā taha e rua o te whārite.
7\left(-y+69\right)+y=87
Whakakapia te -y+69 mō te x ki tērā atu whārite, 7x+y=87.
-7y+483+y=87
Whakareatia 7 ki te -y+69.
-6y+483=87
Tāpiri -7y ki te y.
-6y=-396
Me tango 483 mai i ngā taha e rua o te whārite.
y=66
Whakawehea ngā taha e rua ki te -6.
x=-66+69
Whakaurua te 66 mō y ki x=-y+69. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Tāpiri 69 ki te -66.
x=3,y=66
Kua oti te pūnaha te whakatau.
x+y=69,7x+y=87
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}69\\87\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\7&1\end{matrix}\right))\left(\begin{matrix}1&1\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\7&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\7&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\7&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\7&1\end{matrix}\right))\left(\begin{matrix}69\\87\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-7}&-\frac{1}{1-7}\\-\frac{7}{1-7}&\frac{1}{1-7}\end{matrix}\right)\left(\begin{matrix}69\\87\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{1}{6}\\\frac{7}{6}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}69\\87\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 69+\frac{1}{6}\times 87\\\frac{7}{6}\times 69-\frac{1}{6}\times 87\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\66\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=66
Tangohia ngā huānga poukapa x me y.
x+y=69,7x+y=87
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-7x+y-y=69-87
Me tango 7x+y=87 mai i x+y=69 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x-7x=69-87
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6x=69-87
Tāpiri x ki te -7x.
-6x=-18
Tāpiri 69 ki te -87.
x=3
Whakawehea ngā taha e rua ki te -6.
7\times 3+y=87
Whakaurua te 3 mō x ki 7x+y=87. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
21+y=87
Whakareatia 7 ki te 3.
y=66
Me tango 21 mai i ngā taha e rua o te whārite.
x=3,y=66
Kua oti te pūnaha te whakatau.