Whakaoti mō x, y
x=300
y=200
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=500,25x+35y=14500
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=500
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+500
Me tango y mai i ngā taha e rua o te whārite.
25\left(-y+500\right)+35y=14500
Whakakapia te -y+500 mō te x ki tērā atu whārite, 25x+35y=14500.
-25y+12500+35y=14500
Whakareatia 25 ki te -y+500.
10y+12500=14500
Tāpiri -25y ki te 35y.
10y=2000
Me tango 12500 mai i ngā taha e rua o te whārite.
y=200
Whakawehea ngā taha e rua ki te 10.
x=-200+500
Whakaurua te 200 mō y ki x=-y+500. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=300
Tāpiri 500 ki te -200.
x=300,y=200
Kua oti te pūnaha te whakatau.
x+y=500,25x+35y=14500
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\25&35\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}500\\14500\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}1&1\\25&35\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\14500\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\25&35\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\14500\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\14500\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{35-25}&-\frac{1}{35-25}\\-\frac{25}{35-25}&\frac{1}{35-25}\end{matrix}\right)\left(\begin{matrix}500\\14500\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}&-\frac{1}{10}\\-\frac{5}{2}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}500\\14500\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\times 500-\frac{1}{10}\times 14500\\-\frac{5}{2}\times 500+\frac{1}{10}\times 14500\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\200\end{matrix}\right)
Mahia ngā tātaitanga.
x=300,y=200
Tangohia ngā huānga poukapa x me y.
x+y=500,25x+35y=14500
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
25x+25y=25\times 500,25x+35y=14500
Kia ōrite ai a x me 25x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 25 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
25x+25y=12500,25x+35y=14500
Whakarūnātia.
25x-25x+25y-35y=12500-14500
Me tango 25x+35y=14500 mai i 25x+25y=12500 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
25y-35y=12500-14500
Tāpiri 25x ki te -25x. Ka whakakore atu ngā kupu 25x me -25x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-10y=12500-14500
Tāpiri 25y ki te -35y.
-10y=-2000
Tāpiri 12500 ki te -14500.
y=200
Whakawehea ngā taha e rua ki te -10.
25x+35\times 200=14500
Whakaurua te 200 mō y ki 25x+35y=14500. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
25x+7000=14500
Whakareatia 35 ki te 200.
25x=7500
Me tango 7000 mai i ngā taha e rua o te whārite.
x=300
Whakawehea ngā taha e rua ki te 25.
x=300,y=200
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}