Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=500,25x+35y=1450
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=500
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+500
Me tango y mai i ngā taha e rua o te whārite.
25\left(-y+500\right)+35y=1450
Whakakapia te -y+500 mō te x ki tērā atu whārite, 25x+35y=1450.
-25y+12500+35y=1450
Whakareatia 25 ki te -y+500.
10y+12500=1450
Tāpiri -25y ki te 35y.
10y=-11050
Me tango 12500 mai i ngā taha e rua o te whārite.
y=-1105
Whakawehea ngā taha e rua ki te 10.
x=-\left(-1105\right)+500
Whakaurua te -1105 mō y ki x=-y+500. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1105+500
Whakareatia -1 ki te -1105.
x=1605
Tāpiri 500 ki te 1105.
x=1605,y=-1105
Kua oti te pūnaha te whakatau.
x+y=500,25x+35y=1450
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\25&35\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}500\\1450\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}1&1\\25&35\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\1450\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\25&35\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\1450\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\1450\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{35-25}&-\frac{1}{35-25}\\-\frac{25}{35-25}&\frac{1}{35-25}\end{matrix}\right)\left(\begin{matrix}500\\1450\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}&-\frac{1}{10}\\-\frac{5}{2}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}500\\1450\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\times 500-\frac{1}{10}\times 1450\\-\frac{5}{2}\times 500+\frac{1}{10}\times 1450\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1605\\-1105\end{matrix}\right)
Mahia ngā tātaitanga.
x=1605,y=-1105
Tangohia ngā huānga poukapa x me y.
x+y=500,25x+35y=1450
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
25x+25y=25\times 500,25x+35y=1450
Kia ōrite ai a x me 25x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 25 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
25x+25y=12500,25x+35y=1450
Whakarūnātia.
25x-25x+25y-35y=12500-1450
Me tango 25x+35y=1450 mai i 25x+25y=12500 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
25y-35y=12500-1450
Tāpiri 25x ki te -25x. Ka whakakore atu ngā kupu 25x me -25x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-10y=12500-1450
Tāpiri 25y ki te -35y.
-10y=11050
Tāpiri 12500 ki te -1450.
y=-1105
Whakawehea ngā taha e rua ki te -10.
25x+35\left(-1105\right)=1450
Whakaurua te -1105 mō y ki 25x+35y=1450. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
25x-38675=1450
Whakareatia 35 ki te -1105.
25x=40125
Me tāpiri 38675 ki ngā taha e rua o te whārite.
x=1605
Whakawehea ngā taha e rua ki te 25.
x=1605,y=-1105
Kua oti te pūnaha te whakatau.