Whakaoti mō x, y
x=45
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-9y=0
Whakaarohia te whārite tuarua. Tangohia te 9y mai i ngā taha e rua.
x+y=50,x-9y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=50
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+50
Me tango y mai i ngā taha e rua o te whārite.
-y+50-9y=0
Whakakapia te -y+50 mō te x ki tērā atu whārite, x-9y=0.
-10y+50=0
Tāpiri -y ki te -9y.
-10y=-50
Me tango 50 mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te -10.
x=-5+50
Whakaurua te 5 mō y ki x=-y+50. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=45
Tāpiri 50 ki te -5.
x=45,y=5
Kua oti te pūnaha te whakatau.
x-9y=0
Whakaarohia te whārite tuarua. Tangohia te 9y mai i ngā taha e rua.
x+y=50,x-9y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}1&1\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-9-1}&-\frac{1}{-9-1}\\-\frac{1}{-9-1}&\frac{1}{-9-1}\end{matrix}\right)\left(\begin{matrix}50\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{10}&\frac{1}{10}\\\frac{1}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}50\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{10}\times 50\\\frac{1}{10}\times 50\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=45,y=5
Tangohia ngā huānga poukapa x me y.
x-9y=0
Whakaarohia te whārite tuarua. Tangohia te 9y mai i ngā taha e rua.
x+y=50,x-9y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+y+9y=50
Me tango x-9y=0 mai i x+y=50 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+9y=50
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
10y=50
Tāpiri y ki te 9y.
y=5
Whakawehea ngā taha e rua ki te 10.
x-9\times 5=0
Whakaurua te 5 mō y ki x-9y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-45=0
Whakareatia -9 ki te 5.
x=45
Me tāpiri 45 ki ngā taha e rua o te whārite.
x=45,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}