Whakaoti mō x, y
x=3
y=\frac{3}{4}=0.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y-5y=0
Whakaarohia te whārite tuatahi. Tangohia te 5y mai i ngā taha e rua.
x-4y=0
Pahekotia te y me -5y, ka -4y.
x-4y=0,x+8y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-4y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=4y
Me tāpiri 4y ki ngā taha e rua o te whārite.
4y+8y=9
Whakakapia te 4y mō te x ki tērā atu whārite, x+8y=9.
12y=9
Tāpiri 4y ki te 8y.
y=\frac{3}{4}
Whakawehea ngā taha e rua ki te 12.
x=4\times \frac{3}{4}
Whakaurua te \frac{3}{4} mō y ki x=4y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Whakareatia 4 ki te \frac{3}{4}.
x=3,y=\frac{3}{4}
Kua oti te pūnaha te whakatau.
x+y-5y=0
Whakaarohia te whārite tuatahi. Tangohia te 5y mai i ngā taha e rua.
x-4y=0
Pahekotia te y me -5y, ka -4y.
x-4y=0,x+8y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-4\\1&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-4\\1&8\end{matrix}\right))\left(\begin{matrix}1&-4\\1&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&8\end{matrix}\right))\left(\begin{matrix}0\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-4\\1&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&8\end{matrix}\right))\left(\begin{matrix}0\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&8\end{matrix}\right))\left(\begin{matrix}0\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{8-\left(-4\right)}&-\frac{-4}{8-\left(-4\right)}\\-\frac{1}{8-\left(-4\right)}&\frac{1}{8-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}0\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\-\frac{1}{12}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}0\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 9\\\frac{1}{12}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=\frac{3}{4}
Tangohia ngā huānga poukapa x me y.
x+y-5y=0
Whakaarohia te whārite tuatahi. Tangohia te 5y mai i ngā taha e rua.
x-4y=0
Pahekotia te y me -5y, ka -4y.
x-4y=0,x+8y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x-4y-8y=-9
Me tango x+8y=9 mai i x-4y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-8y=-9
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-12y=-9
Tāpiri -4y ki te -8y.
y=\frac{3}{4}
Whakawehea ngā taha e rua ki te -12.
x+8\times \frac{3}{4}=9
Whakaurua te \frac{3}{4} mō y ki x+8y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+6=9
Whakareatia 8 ki te \frac{3}{4}.
x=3
Me tango 6 mai i ngā taha e rua o te whārite.
x=3,y=\frac{3}{4}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}