Whakaoti mō x, y
x = \frac{3401}{10} = 340\frac{1}{10} = 340.1
y = -\frac{901}{10} = -90\frac{1}{10} = -90.1
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x+19=3420
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 190, arā, te tauraro pātahi he tino iti rawa te kitea o 19,10.
10x=3420-19
Tangohia te 19 mai i ngā taha e rua.
10x=3401
Tangohia te 19 i te 3420, ka 3401.
x=\frac{3401}{10}
Whakawehea ngā taha e rua ki te 10.
\frac{3401}{10}+y=250
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=250-\frac{3401}{10}
Tangohia te \frac{3401}{10} mai i ngā taha e rua.
y=-\frac{901}{10}
Tangohia te \frac{3401}{10} i te 250, ka -\frac{901}{10}.
x=\frac{3401}{10} y=-\frac{901}{10}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}