Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x=\frac{51}{7}
Whakaarohia te whārite tuatoru. Whakawehea ngā taha e rua ki te 7.
\frac{51}{7}-y=29
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
-y=29-\frac{51}{7}
Tangohia te \frac{51}{7} mai i ngā taha e rua.
-y=\frac{152}{7}
Tangohia te \frac{51}{7} i te 29, ka \frac{152}{7}.
y=\frac{\frac{152}{7}}{-1}
Whakawehea ngā taha e rua ki te -1.
y=\frac{152}{7\left(-1\right)}
Tuhia te \frac{\frac{152}{7}}{-1} hei hautanga kotahi.
y=\frac{152}{-7}
Whakareatia te 7 ki te -1, ka -7.
y=-\frac{152}{7}
Ka taea te hautanga \frac{152}{-7} te tuhi anō ko -\frac{152}{7} mā te tango i te tohu tōraro.
\frac{51}{7}-\frac{152}{7}=2z
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
-\frac{101}{7}=2z
Tangohia te \frac{152}{7} i te \frac{51}{7}, ka -\frac{101}{7}.
2z=-\frac{101}{7}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
z=\frac{-\frac{101}{7}}{2}
Whakawehea ngā taha e rua ki te 2.
z=\frac{-101}{7\times 2}
Tuhia te \frac{-\frac{101}{7}}{2} hei hautanga kotahi.
z=\frac{-101}{14}
Whakareatia te 7 ki te 2, ka 14.
z=-\frac{101}{14}
Ka taea te hautanga \frac{-101}{14} te tuhi anō ko -\frac{101}{14} mā te tango i te tohu tōraro.
x=\frac{51}{7} y=-\frac{152}{7} z=-\frac{101}{14}
Kua oti te pūnaha te whakatau.