Whakaoti mō x, y, z
x = \frac{51}{7} = 7\frac{2}{7} \approx 7.285714286
y = -\frac{152}{7} = -21\frac{5}{7} \approx -21.714285714
z = -\frac{101}{14} = -7\frac{3}{14} \approx -7.214285714
Tohaina
Kua tāruatia ki te papatopenga
x=\frac{51}{7}
Whakaarohia te whārite tuatoru. Whakawehea ngā taha e rua ki te 7.
\frac{51}{7}-y=29
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
-y=29-\frac{51}{7}
Tangohia te \frac{51}{7} mai i ngā taha e rua.
-y=\frac{152}{7}
Tangohia te \frac{51}{7} i te 29, ka \frac{152}{7}.
y=\frac{\frac{152}{7}}{-1}
Whakawehea ngā taha e rua ki te -1.
y=\frac{152}{7\left(-1\right)}
Tuhia te \frac{\frac{152}{7}}{-1} hei hautanga kotahi.
y=\frac{152}{-7}
Whakareatia te 7 ki te -1, ka -7.
y=-\frac{152}{7}
Ka taea te hautanga \frac{152}{-7} te tuhi anō ko -\frac{152}{7} mā te tango i te tohu tōraro.
\frac{51}{7}-\frac{152}{7}=2z
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
-\frac{101}{7}=2z
Tangohia te \frac{152}{7} i te \frac{51}{7}, ka -\frac{101}{7}.
2z=-\frac{101}{7}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
z=\frac{-\frac{101}{7}}{2}
Whakawehea ngā taha e rua ki te 2.
z=\frac{-101}{7\times 2}
Tuhia te \frac{-\frac{101}{7}}{2} hei hautanga kotahi.
z=\frac{-101}{14}
Whakareatia te 7 ki te 2, ka 14.
z=-\frac{101}{14}
Ka taea te hautanga \frac{-101}{14} te tuhi anō ko -\frac{101}{14} mā te tango i te tohu tōraro.
x=\frac{51}{7} y=-\frac{152}{7} z=-\frac{101}{14}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}