Whakaoti mō x, y
x=6787
y=-5087
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=1700,15x+20y=65
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=1700
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+1700
Me tango y mai i ngā taha e rua o te whārite.
15\left(-y+1700\right)+20y=65
Whakakapia te -y+1700 mō te x ki tērā atu whārite, 15x+20y=65.
-15y+25500+20y=65
Whakareatia 15 ki te -y+1700.
5y+25500=65
Tāpiri -15y ki te 20y.
5y=-25435
Me tango 25500 mai i ngā taha e rua o te whārite.
y=-5087
Whakawehea ngā taha e rua ki te 5.
x=-\left(-5087\right)+1700
Whakaurua te -5087 mō y ki x=-y+1700. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=5087+1700
Whakareatia -1 ki te -5087.
x=6787
Tāpiri 1700 ki te 5087.
x=6787,y=-5087
Kua oti te pūnaha te whakatau.
x+y=1700,15x+20y=65
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\15&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1700\\65\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\15&20\end{matrix}\right))\left(\begin{matrix}1&1\\15&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\15&20\end{matrix}\right))\left(\begin{matrix}1700\\65\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\15&20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\15&20\end{matrix}\right))\left(\begin{matrix}1700\\65\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\15&20\end{matrix}\right))\left(\begin{matrix}1700\\65\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{20-15}&-\frac{1}{20-15}\\-\frac{15}{20-15}&\frac{1}{20-15}\end{matrix}\right)\left(\begin{matrix}1700\\65\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-\frac{1}{5}\\-3&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1700\\65\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 1700-\frac{1}{5}\times 65\\-3\times 1700+\frac{1}{5}\times 65\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6787\\-5087\end{matrix}\right)
Mahia ngā tātaitanga.
x=6787,y=-5087
Tangohia ngā huānga poukapa x me y.
x+y=1700,15x+20y=65
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
15x+15y=15\times 1700,15x+20y=65
Kia ōrite ai a x me 15x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 15 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
15x+15y=25500,15x+20y=65
Whakarūnātia.
15x-15x+15y-20y=25500-65
Me tango 15x+20y=65 mai i 15x+15y=25500 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
15y-20y=25500-65
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=25500-65
Tāpiri 15y ki te -20y.
-5y=25435
Tāpiri 25500 ki te -65.
y=-5087
Whakawehea ngā taha e rua ki te -5.
15x+20\left(-5087\right)=65
Whakaurua te -5087 mō y ki 15x+20y=65. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
15x-101740=65
Whakareatia 20 ki te -5087.
15x=101805
Me tāpiri 101740 ki ngā taha e rua o te whārite.
x=6787
Whakawehea ngā taha e rua ki te 15.
x=6787,y=-5087
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}