Whakaoti mō x, y
x=5
y=12
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=17,2.6x+3.5y=55
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=17
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+17
Me tango y mai i ngā taha e rua o te whārite.
2.6\left(-y+17\right)+3.5y=55
Whakakapia te -y+17 mō te x ki tērā atu whārite, 2.6x+3.5y=55.
-2.6y+44.2+3.5y=55
Whakareatia 2.6 ki te -y+17.
0.9y+44.2=55
Tāpiri -\frac{13y}{5} ki te \frac{7y}{2}.
0.9y=10.8
Me tango 44.2 mai i ngā taha e rua o te whārite.
y=12
Whakawehea ngā taha e rua o te whārite ki te 0.9, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-12+17
Whakaurua te 12 mō y ki x=-y+17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=5
Tāpiri 17 ki te -12.
x=5,y=12
Kua oti te pūnaha te whakatau.
x+y=17,2.6x+3.5y=55
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\55\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right))\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right))\left(\begin{matrix}17\\55\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right))\left(\begin{matrix}17\\55\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right))\left(\begin{matrix}17\\55\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3.5}{3.5-2.6}&-\frac{1}{3.5-2.6}\\-\frac{2.6}{3.5-2.6}&\frac{1}{3.5-2.6}\end{matrix}\right)\left(\begin{matrix}17\\55\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{9}&-\frac{10}{9}\\-\frac{26}{9}&\frac{10}{9}\end{matrix}\right)\left(\begin{matrix}17\\55\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{9}\times 17-\frac{10}{9}\times 55\\-\frac{26}{9}\times 17+\frac{10}{9}\times 55\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\12\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=12
Tangohia ngā huānga poukapa x me y.
x+y=17,2.6x+3.5y=55
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2.6x+2.6y=2.6\times 17,2.6x+3.5y=55
Kia ōrite ai a x me \frac{13x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2.6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2.6x+2.6y=44.2,2.6x+3.5y=55
Whakarūnātia.
2.6x-2.6x+2.6y-3.5y=44.2-55
Me tango 2.6x+3.5y=55 mai i 2.6x+2.6y=44.2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2.6y-3.5y=44.2-55
Tāpiri \frac{13x}{5} ki te -\frac{13x}{5}. Ka whakakore atu ngā kupu \frac{13x}{5} me -\frac{13x}{5}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-0.9y=44.2-55
Tāpiri \frac{13y}{5} ki te -\frac{7y}{2}.
-0.9y=-10.8
Tāpiri 44.2 ki te -55.
y=12
Whakawehea ngā taha e rua o te whārite ki te -0.9, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
2.6x+3.5\times 12=55
Whakaurua te 12 mō y ki 2.6x+3.5y=55. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2.6x+42=55
Whakareatia 3.5 ki te 12.
2.6x=13
Me tango 42 mai i ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua o te whārite ki te 2.6, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=5,y=12
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}