Whakaoti mō x, y
x=7
y=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x+y-10y=x-18
Whakaarohia te whārite tuarua. Tangohia te 10y mai i ngā taha e rua.
10x-9y=x-18
Pahekotia te y me -10y, ka -9y.
10x-9y-x=-18
Tangohia te x mai i ngā taha e rua.
9x-9y=-18
Pahekotia te 10x me -x, ka 9x.
x+y=16,9x-9y=-18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+16
Me tango y mai i ngā taha e rua o te whārite.
9\left(-y+16\right)-9y=-18
Whakakapia te -y+16 mō te x ki tērā atu whārite, 9x-9y=-18.
-9y+144-9y=-18
Whakareatia 9 ki te -y+16.
-18y+144=-18
Tāpiri -9y ki te -9y.
-18y=-162
Me tango 144 mai i ngā taha e rua o te whārite.
y=9
Whakawehea ngā taha e rua ki te -18.
x=-9+16
Whakaurua te 9 mō y ki x=-y+16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=7
Tāpiri 16 ki te -9.
x=7,y=9
Kua oti te pūnaha te whakatau.
10x+y-10y=x-18
Whakaarohia te whārite tuarua. Tangohia te 10y mai i ngā taha e rua.
10x-9y=x-18
Pahekotia te y me -10y, ka -9y.
10x-9y-x=-18
Tangohia te x mai i ngā taha e rua.
9x-9y=-18
Pahekotia te 10x me -x, ka 9x.
x+y=16,9x-9y=-18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\9&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\-18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\9&-9\end{matrix}\right))\left(\begin{matrix}1&1\\9&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\9&-9\end{matrix}\right))\left(\begin{matrix}16\\-18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\9&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\9&-9\end{matrix}\right))\left(\begin{matrix}16\\-18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\9&-9\end{matrix}\right))\left(\begin{matrix}16\\-18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-9-9}&-\frac{1}{-9-9}\\-\frac{9}{-9-9}&\frac{1}{-9-9}\end{matrix}\right)\left(\begin{matrix}16\\-18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{18}\\\frac{1}{2}&-\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}16\\-18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 16+\frac{1}{18}\left(-18\right)\\\frac{1}{2}\times 16-\frac{1}{18}\left(-18\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\9\end{matrix}\right)
Mahia ngā tātaitanga.
x=7,y=9
Tangohia ngā huānga poukapa x me y.
10x+y-10y=x-18
Whakaarohia te whārite tuarua. Tangohia te 10y mai i ngā taha e rua.
10x-9y=x-18
Pahekotia te y me -10y, ka -9y.
10x-9y-x=-18
Tangohia te x mai i ngā taha e rua.
9x-9y=-18
Pahekotia te 10x me -x, ka 9x.
x+y=16,9x-9y=-18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9x+9y=9\times 16,9x-9y=-18
Kia ōrite ai a x me 9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
9x+9y=144,9x-9y=-18
Whakarūnātia.
9x-9x+9y+9y=144+18
Me tango 9x-9y=-18 mai i 9x+9y=144 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y+9y=144+18
Tāpiri 9x ki te -9x. Ka whakakore atu ngā kupu 9x me -9x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
18y=144+18
Tāpiri 9y ki te 9y.
18y=162
Tāpiri 144 ki te 18.
y=9
Whakawehea ngā taha e rua ki te 18.
9x-9\times 9=-18
Whakaurua te 9 mō y ki 9x-9y=-18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
9x-81=-18
Whakareatia -9 ki te 9.
9x=63
Me tāpiri 81 ki ngā taha e rua o te whārite.
x=7
Whakawehea ngā taha e rua ki te 9.
x=7,y=9
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}