Whakaoti mō x, y
x=70
y=30
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=100,60x+70y=6300
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=100
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+100
Me tango y mai i ngā taha e rua o te whārite.
60\left(-y+100\right)+70y=6300
Whakakapia te -y+100 mō te x ki tērā atu whārite, 60x+70y=6300.
-60y+6000+70y=6300
Whakareatia 60 ki te -y+100.
10y+6000=6300
Tāpiri -60y ki te 70y.
10y=300
Me tango 6000 mai i ngā taha e rua o te whārite.
y=30
Whakawehea ngā taha e rua ki te 10.
x=-30+100
Whakaurua te 30 mō y ki x=-y+100. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=70
Tāpiri 100 ki te -30.
x=70,y=30
Kua oti te pūnaha te whakatau.
x+y=100,60x+70y=6300
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\60&70\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\6300\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\60&70\end{matrix}\right))\left(\begin{matrix}1&1\\60&70\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\60&70\end{matrix}\right))\left(\begin{matrix}100\\6300\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\60&70\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\60&70\end{matrix}\right))\left(\begin{matrix}100\\6300\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\60&70\end{matrix}\right))\left(\begin{matrix}100\\6300\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{70}{70-60}&-\frac{1}{70-60}\\-\frac{60}{70-60}&\frac{1}{70-60}\end{matrix}\right)\left(\begin{matrix}100\\6300\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7&-\frac{1}{10}\\-6&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}100\\6300\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\times 100-\frac{1}{10}\times 6300\\-6\times 100+\frac{1}{10}\times 6300\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}70\\30\end{matrix}\right)
Mahia ngā tātaitanga.
x=70,y=30
Tangohia ngā huānga poukapa x me y.
x+y=100,60x+70y=6300
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
60x+60y=60\times 100,60x+70y=6300
Kia ōrite ai a x me 60x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 60 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
60x+60y=6000,60x+70y=6300
Whakarūnātia.
60x-60x+60y-70y=6000-6300
Me tango 60x+70y=6300 mai i 60x+60y=6000 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
60y-70y=6000-6300
Tāpiri 60x ki te -60x. Ka whakakore atu ngā kupu 60x me -60x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-10y=6000-6300
Tāpiri 60y ki te -70y.
-10y=-300
Tāpiri 6000 ki te -6300.
y=30
Whakawehea ngā taha e rua ki te -10.
60x+70\times 30=6300
Whakaurua te 30 mō y ki 60x+70y=6300. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
60x+2100=6300
Whakareatia 70 ki te 30.
60x=4200
Me tango 2100 mai i ngā taha e rua o te whārite.
x=70
Whakawehea ngā taha e rua ki te 60.
x=70,y=30
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}