Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=1,x-2y=14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+1
Me tango y mai i ngā taha e rua o te whārite.
-y+1-2y=14
Whakakapia te -y+1 mō te x ki tērā atu whārite, x-2y=14.
-3y+1=14
Tāpiri -y ki te -2y.
-3y=13
Me tango 1 mai i ngā taha e rua o te whārite.
y=-\frac{13}{3}
Whakawehea ngā taha e rua ki te -3.
x=-\left(-\frac{13}{3}\right)+1
Whakaurua te -\frac{13}{3} mō y ki x=-y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{13}{3}+1
Whakareatia -1 ki te -\frac{13}{3}.
x=\frac{16}{3}
Tāpiri 1 ki te \frac{13}{3}.
x=\frac{16}{3},y=-\frac{13}{3}
Kua oti te pūnaha te whakatau.
x+y=1,x-2y=14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}1\\14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}+\frac{1}{3}\times 14\\\frac{1}{3}-\frac{1}{3}\times 14\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{3}\\-\frac{13}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{16}{3},y=-\frac{13}{3}
Tangohia ngā huānga poukapa x me y.
x+y=1,x-2y=14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+y+2y=1-14
Me tango x-2y=14 mai i x+y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y+2y=1-14
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=1-14
Tāpiri y ki te 2y.
3y=-13
Tāpiri 1 ki te -14.
y=-\frac{13}{3}
Whakawehea ngā taha e rua ki te 3.
x-2\left(-\frac{13}{3}\right)=14
Whakaurua te -\frac{13}{3} mō y ki x-2y=14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+\frac{26}{3}=14
Whakareatia -2 ki te -\frac{13}{3}.
x=\frac{16}{3}
Me tango \frac{26}{3} mai i ngā taha e rua o te whārite.
x=\frac{16}{3},y=-\frac{13}{3}
Kua oti te pūnaha te whakatau.