Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=0,2x-3y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y
Me tango y mai i ngā taha e rua o te whārite.
2\left(-1\right)y-3y=0
Whakakapia te -y mō te x ki tērā atu whārite, 2x-3y=0.
-2y-3y=0
Whakareatia 2 ki te -y.
-5y=0
Tāpiri -2y ki te -3y.
y=0
Whakawehea ngā taha e rua ki te -5.
x=0
Whakaurua te 0 mō y ki x=-y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0,y=0
Kua oti te pūnaha te whakatau.
x+y=0,2x-3y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\2&-3\end{matrix}\right))\left(\begin{matrix}1&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-3\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\2&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-3\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-3\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2}&-\frac{1}{-3-2}\\-\frac{2}{-3-2}&\frac{1}{-3-2}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{1}{5}\\\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa.
x=0,y=0
Tangohia ngā huānga poukapa x me y.
x+y=0,2x-3y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2y=0,2x-3y=0
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x-2x+2y+3y=0
Me tango 2x-3y=0 mai i 2x+2y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y+3y=0
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=0
Tāpiri 2y ki te 3y.
y=0
Whakawehea ngā taha e rua ki te 5.
2x=0
Whakaurua te 0 mō y ki 2x-3y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0
Whakawehea ngā taha e rua ki te 2.
x=0,y=0
Kua oti te pūnaha te whakatau.