Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-5x=2
Whakaarohia te whārite tuarua. Tangohia te 5x mai i ngā taha e rua.
x+y=-4,-5x+y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=-4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y-4
Me tango y mai i ngā taha e rua o te whārite.
-5\left(-y-4\right)+y=2
Whakakapia te -y-4 mō te x ki tērā atu whārite, -5x+y=2.
5y+20+y=2
Whakareatia -5 ki te -y-4.
6y+20=2
Tāpiri 5y ki te y.
6y=-18
Me tango 20 mai i ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua ki te 6.
x=-\left(-3\right)-4
Whakaurua te -3 mō y ki x=-y-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3-4
Whakareatia -1 ki te -3.
x=-1
Tāpiri -4 ki te 3.
x=-1,y=-3
Kua oti te pūnaha te whakatau.
y-5x=2
Whakaarohia te whārite tuarua. Tangohia te 5x mai i ngā taha e rua.
x+y=-4,-5x+y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\-5&1\end{matrix}\right))\left(\begin{matrix}1&1\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-5&1\end{matrix}\right))\left(\begin{matrix}-4\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\-5&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-5&1\end{matrix}\right))\left(\begin{matrix}-4\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-5&1\end{matrix}\right))\left(\begin{matrix}-4\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-5\right)}&-\frac{1}{1-\left(-5\right)}\\-\frac{-5}{1-\left(-5\right)}&\frac{1}{1-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}-4\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{6}\\\frac{5}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-4\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\left(-4\right)-\frac{1}{6}\times 2\\\frac{5}{6}\left(-4\right)+\frac{1}{6}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=-3
Tangohia ngā huānga poukapa x me y.
y-5x=2
Whakaarohia te whārite tuarua. Tangohia te 5x mai i ngā taha e rua.
x+y=-4,-5x+y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x+5x+y-y=-4-2
Me tango -5x+y=2 mai i x+y=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x+5x=-4-2
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6x=-4-2
Tāpiri x ki te 5x.
6x=-6
Tāpiri -4 ki te -2.
x=-1
Whakawehea ngā taha e rua ki te 6.
-5\left(-1\right)+y=2
Whakaurua te -1 mō x ki -5x+y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
5+y=2
Whakareatia -5 ki te -1.
y=-3
Me tango 5 mai i ngā taha e rua o te whārite.
x=-1,y=-3
Kua oti te pūnaha te whakatau.