Whakaoti mō x, y, z
x = \frac{460}{11} = 41\frac{9}{11} \approx 41.818181818
y = \frac{230}{11} = 20\frac{10}{11} \approx 20.909090909
z = \frac{168}{11} = 15\frac{3}{11} \approx 15.272727273
Tohaina
Kua tāruatia ki te papatopenga
x=2y x+y+z=78 x+4=3z
Me raupapa anō ngā whārite.
2y+y+z=78 2y+4=3z
Whakakapia te 2y mō te x i te whārite tuarua me te tuatoru.
y=-\frac{1}{3}z+26 z=\frac{4}{3}+\frac{2}{3}y
Me whakaoti ēnei whārite mō y me z takitahi.
z=\frac{4}{3}+\frac{2}{3}\left(-\frac{1}{3}z+26\right)
Whakakapia te -\frac{1}{3}z+26 mō te y i te whārite z=\frac{4}{3}+\frac{2}{3}y.
z=\frac{168}{11}
Me whakaoti te z=\frac{4}{3}+\frac{2}{3}\left(-\frac{1}{3}z+26\right) mō z.
y=-\frac{1}{3}\times \frac{168}{11}+26
Whakakapia te \frac{168}{11} mō te z i te whārite y=-\frac{1}{3}z+26.
y=\frac{230}{11}
Tātaitia te y i te y=-\frac{1}{3}\times \frac{168}{11}+26.
x=2\times \frac{230}{11}
Whakakapia te \frac{230}{11} mō te y i te whārite x=2y.
x=\frac{460}{11}
Tātaitia te x i te x=2\times \frac{230}{11}.
x=\frac{460}{11} y=\frac{230}{11} z=\frac{168}{11}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}