Whakaoti mō x, y, z
x=12
y=4
z=5
Tohaina
Kua tāruatia ki te papatopenga
x=-y-z+21
Me whakaoti te x+y+z=21 mō x.
10\left(-y-z+21\right)=2\times 15y 10\left(-y-z+21\right)=2\times 12z
Whakakapia te -y-z+21 mō te x i te whārite tuarua me te tuatoru.
y=\frac{21}{4}-\frac{1}{4}z z=\frac{105}{17}-\frac{5}{17}y
Me whakaoti ēnei whārite mō y me z takitahi.
z=\frac{105}{17}-\frac{5}{17}\left(\frac{21}{4}-\frac{1}{4}z\right)
Whakakapia te \frac{21}{4}-\frac{1}{4}z mō te y i te whārite z=\frac{105}{17}-\frac{5}{17}y.
z=5
Me whakaoti te z=\frac{105}{17}-\frac{5}{17}\left(\frac{21}{4}-\frac{1}{4}z\right) mō z.
y=\frac{21}{4}-\frac{1}{4}\times 5
Whakakapia te 5 mō te z i te whārite y=\frac{21}{4}-\frac{1}{4}z.
y=4
Tātaitia te y i te y=\frac{21}{4}-\frac{1}{4}\times 5.
x=-4-5+21
Whakakapia te 4 mō te y me te 5 mō z i te whārite x=-y-z+21.
x=12
Tātaitia te x i te x=-4-5+21.
x=12 y=4 z=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}