Whakaoti mō x, y, z
x=\frac{2}{3}\approx 0.666666667
y = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
z = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
Tohaina
Kua tāruatia ki te papatopenga
x=-y-z
Me whakaoti te x+y+z=0 mō x.
2\left(-y-z\right)-y-z=2 -y-z-z=3
Whakakapia te -y-z mō te x i te whārite tuarua me te tuatoru.
y=-z-\frac{2}{3} z=-\frac{3}{2}-\frac{1}{2}y
Me whakaoti ēnei whārite mō y me z takitahi.
z=-\frac{3}{2}-\frac{1}{2}\left(-z-\frac{2}{3}\right)
Whakakapia te -z-\frac{2}{3} mō te y i te whārite z=-\frac{3}{2}-\frac{1}{2}y.
z=-\frac{7}{3}
Me whakaoti te z=-\frac{3}{2}-\frac{1}{2}\left(-z-\frac{2}{3}\right) mō z.
y=-\left(-\frac{7}{3}\right)-\frac{2}{3}
Whakakapia te -\frac{7}{3} mō te z i te whārite y=-z-\frac{2}{3}.
y=\frac{5}{3}
Tātaitia te y i te y=-\left(-\frac{7}{3}\right)-\frac{2}{3}.
x=-\frac{5}{3}-\left(-\frac{7}{3}\right)
Whakakapia te \frac{5}{3} mō te y me te -\frac{7}{3} mō z i te whārite x=-y-z.
x=\frac{2}{3}
Tātaitia te x i te x=-\frac{5}{3}-\left(-\frac{7}{3}\right).
x=\frac{2}{3} y=\frac{5}{3} z=-\frac{7}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}