Whakaoti mō x, y
x=3
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+6y=27,7x-3y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+6y=27
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-6y+27
Me tango 6y mai i ngā taha e rua o te whārite.
7\left(-6y+27\right)-3y=9
Whakakapia te -6y+27 mō te x ki tērā atu whārite, 7x-3y=9.
-42y+189-3y=9
Whakareatia 7 ki te -6y+27.
-45y+189=9
Tāpiri -42y ki te -3y.
-45y=-180
Me tango 189 mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te -45.
x=-6\times 4+27
Whakaurua te 4 mō y ki x=-6y+27. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-24+27
Whakareatia -6 ki te 4.
x=3
Tāpiri 27 ki te -24.
x=3,y=4
Kua oti te pūnaha te whakatau.
x+6y=27,7x-3y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&6\\7&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&6\\7&-3\end{matrix}\right))\left(\begin{matrix}1&6\\7&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\7&-3\end{matrix}\right))\left(\begin{matrix}27\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&6\\7&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\7&-3\end{matrix}\right))\left(\begin{matrix}27\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\7&-3\end{matrix}\right))\left(\begin{matrix}27\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-6\times 7}&-\frac{6}{-3-6\times 7}\\-\frac{7}{-3-6\times 7}&\frac{1}{-3-6\times 7}\end{matrix}\right)\left(\begin{matrix}27\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&\frac{2}{15}\\\frac{7}{45}&-\frac{1}{45}\end{matrix}\right)\left(\begin{matrix}27\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\times 27+\frac{2}{15}\times 9\\\frac{7}{45}\times 27-\frac{1}{45}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=4
Tangohia ngā huānga poukapa x me y.
x+6y=27,7x-3y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7x+7\times 6y=7\times 27,7x-3y=9
Kia ōrite ai a x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
7x+42y=189,7x-3y=9
Whakarūnātia.
7x-7x+42y+3y=189-9
Me tango 7x-3y=9 mai i 7x+42y=189 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
42y+3y=189-9
Tāpiri 7x ki te -7x. Ka whakakore atu ngā kupu 7x me -7x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
45y=189-9
Tāpiri 42y ki te 3y.
45y=180
Tāpiri 189 ki te -9.
y=4
Whakawehea ngā taha e rua ki te 45.
7x-3\times 4=9
Whakaurua te 4 mō y ki 7x-3y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x-12=9
Whakareatia -3 ki te 4.
7x=21
Me tāpiri 12 ki ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 7.
x=3,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}