Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+5y=1,3x+4y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+5y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-5y+1
Me tango 5y mai i ngā taha e rua o te whārite.
3\left(-5y+1\right)+4y=4
Whakakapia te -5y+1 mō te x ki tērā atu whārite, 3x+4y=4.
-15y+3+4y=4
Whakareatia 3 ki te -5y+1.
-11y+3=4
Tāpiri -15y ki te 4y.
-11y=1
Me tango 3 mai i ngā taha e rua o te whārite.
y=-\frac{1}{11}
Whakawehea ngā taha e rua ki te -11.
x=-5\left(-\frac{1}{11}\right)+1
Whakaurua te -\frac{1}{11} mō y ki x=-5y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5}{11}+1
Whakareatia -5 ki te -\frac{1}{11}.
x=\frac{16}{11}
Tāpiri 1 ki te \frac{5}{11}.
x=\frac{16}{11},y=-\frac{1}{11}
Kua oti te pūnaha te whakatau.
x+5y=1,3x+4y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&5\\3&4\end{matrix}\right))\left(\begin{matrix}1&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&4\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&5\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&4\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&5\\3&4\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-5\times 3}&-\frac{5}{4-5\times 3}\\-\frac{3}{4-5\times 3}&\frac{1}{4-5\times 3}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{11}&\frac{5}{11}\\\frac{3}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{11}+\frac{5}{11}\times 4\\\frac{3}{11}-\frac{1}{11}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{11}\\-\frac{1}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{16}{11},y=-\frac{1}{11}
Tangohia ngā huānga poukapa x me y.
x+5y=1,3x+4y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+3\times 5y=3,3x+4y=4
Kia ōrite ai a x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3x+15y=3,3x+4y=4
Whakarūnātia.
3x-3x+15y-4y=3-4
Me tango 3x+4y=4 mai i 3x+15y=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
15y-4y=3-4
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=3-4
Tāpiri 15y ki te -4y.
11y=-1
Tāpiri 3 ki te -4.
y=-\frac{1}{11}
Whakawehea ngā taha e rua ki te 11.
3x+4\left(-\frac{1}{11}\right)=4
Whakaurua te -\frac{1}{11} mō y ki 3x+4y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-\frac{4}{11}=4
Whakareatia 4 ki te -\frac{1}{11}.
3x=\frac{48}{11}
Me tāpiri \frac{4}{11} ki ngā taha e rua o te whārite.
x=\frac{16}{11}
Whakawehea ngā taha e rua ki te 3.
x=\frac{16}{11},y=-\frac{1}{11}
Kua oti te pūnaha te whakatau.