Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+5-3y=0
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
x-3y=-5
Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y-2-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-2x=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x-3y=-5,-2x+y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-3y=-5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=3y-5
Me tāpiri 3y ki ngā taha e rua o te whārite.
-2\left(3y-5\right)+y=2
Whakakapia te 3y-5 mō te x ki tērā atu whārite, -2x+y=2.
-6y+10+y=2
Whakareatia -2 ki te 3y-5.
-5y+10=2
Tāpiri -6y ki te y.
-5y=-8
Me tango 10 mai i ngā taha e rua o te whārite.
y=\frac{8}{5}
Whakawehea ngā taha e rua ki te -5.
x=3\times \frac{8}{5}-5
Whakaurua te \frac{8}{5} mō y ki x=3y-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{24}{5}-5
Whakareatia 3 ki te \frac{8}{5}.
x=-\frac{1}{5}
Tāpiri -5 ki te \frac{24}{5}.
x=-\frac{1}{5},y=\frac{8}{5}
Kua oti te pūnaha te whakatau.
x+5-3y=0
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
x-3y=-5
Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y-2-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-2x=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x-3y=-5,-2x+y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\-2&1\end{matrix}\right))\left(\begin{matrix}1&-3\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-2&1\end{matrix}\right))\left(\begin{matrix}-5\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-2&1\end{matrix}\right))\left(\begin{matrix}-5\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-2&1\end{matrix}\right))\left(\begin{matrix}-5\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\left(-2\right)\right)}&-\frac{-3}{1-\left(-3\left(-2\right)\right)}\\-\frac{-2}{1-\left(-3\left(-2\right)\right)}&\frac{1}{1-\left(-3\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-5\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&-\frac{3}{5}\\-\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-5\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\left(-5\right)-\frac{3}{5}\times 2\\-\frac{2}{5}\left(-5\right)-\frac{1}{5}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\\\frac{8}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{1}{5},y=\frac{8}{5}
Tangohia ngā huānga poukapa x me y.
x+5-3y=0
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
x-3y=-5
Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y-2-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-2x=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x-3y=-5,-2x+y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-2\left(-3\right)y=-2\left(-5\right),-2x+y=2
Kia ōrite ai a x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-2x+6y=10,-2x+y=2
Whakarūnātia.
-2x+2x+6y-y=10-2
Me tango -2x+y=2 mai i -2x+6y=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-y=10-2
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=10-2
Tāpiri 6y ki te -y.
5y=8
Tāpiri 10 ki te -2.
y=\frac{8}{5}
Whakawehea ngā taha e rua ki te 5.
-2x+\frac{8}{5}=2
Whakaurua te \frac{8}{5} mō y ki -2x+y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x=\frac{2}{5}
Me tango \frac{8}{5} mai i ngā taha e rua o te whārite.
x=-\frac{1}{5}
Whakawehea ngā taha e rua ki te -2.
x=-\frac{1}{5},y=\frac{8}{5}
Kua oti te pūnaha te whakatau.