Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+4y=6,x-y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+4y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-4y+6
Me tango 4y mai i ngā taha e rua o te whārite.
-4y+6-y=4
Whakakapia te -4y+6 mō te x ki tērā atu whārite, x-y=4.
-5y+6=4
Tāpiri -4y ki te -y.
-5y=-2
Me tango 6 mai i ngā taha e rua o te whārite.
y=\frac{2}{5}
Whakawehea ngā taha e rua ki te -5.
x=-4\times \frac{2}{5}+6
Whakaurua te \frac{2}{5} mō y ki x=-4y+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{8}{5}+6
Whakareatia -4 ki te \frac{2}{5}.
x=\frac{22}{5}
Tāpiri 6 ki te -\frac{8}{5}.
x=\frac{22}{5},y=\frac{2}{5}
Kua oti te pūnaha te whakatau.
x+4y=6,x-y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&4\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&4\\1&-1\end{matrix}\right))\left(\begin{matrix}1&4\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&-1\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&4\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&-1\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\1&-1\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-4}&-\frac{4}{-1-4}\\-\frac{1}{-1-4}&\frac{1}{-1-4}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{4}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 6+\frac{4}{5}\times 4\\\frac{1}{5}\times 6-\frac{1}{5}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{5}\\\frac{2}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{22}{5},y=\frac{2}{5}
Tangohia ngā huānga poukapa x me y.
x+4y=6,x-y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+4y+y=6-4
Me tango x-y=4 mai i x+4y=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y+y=6-4
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=6-4
Tāpiri 4y ki te y.
5y=2
Tāpiri 6 ki te -4.
y=\frac{2}{5}
Whakawehea ngā taha e rua ki te 5.
x-\frac{2}{5}=4
Whakaurua te \frac{2}{5} mō y ki x-y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{22}{5}
Me tāpiri \frac{2}{5} ki ngā taha e rua o te whārite.
x=\frac{22}{5},y=\frac{2}{5}
Kua oti te pūnaha te whakatau.