Whakaoti mō x, y
x=5
y=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+4y=41,4x+5y=65
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+4y=41
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-4y+41
Me tango 4y mai i ngā taha e rua o te whārite.
4\left(-4y+41\right)+5y=65
Whakakapia te -4y+41 mō te x ki tērā atu whārite, 4x+5y=65.
-16y+164+5y=65
Whakareatia 4 ki te -4y+41.
-11y+164=65
Tāpiri -16y ki te 5y.
-11y=-99
Me tango 164 mai i ngā taha e rua o te whārite.
y=9
Whakawehea ngā taha e rua ki te -11.
x=-4\times 9+41
Whakaurua te 9 mō y ki x=-4y+41. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-36+41
Whakareatia -4 ki te 9.
x=5
Tāpiri 41 ki te -36.
x=5,y=9
Kua oti te pūnaha te whakatau.
x+4y=41,4x+5y=65
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&4\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}41\\65\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&4\\4&5\end{matrix}\right))\left(\begin{matrix}1&4\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\4&5\end{matrix}\right))\left(\begin{matrix}41\\65\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&4\\4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\4&5\end{matrix}\right))\left(\begin{matrix}41\\65\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\4&5\end{matrix}\right))\left(\begin{matrix}41\\65\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-4\times 4}&-\frac{4}{5-4\times 4}\\-\frac{4}{5-4\times 4}&\frac{1}{5-4\times 4}\end{matrix}\right)\left(\begin{matrix}41\\65\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{11}&\frac{4}{11}\\\frac{4}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}41\\65\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{11}\times 41+\frac{4}{11}\times 65\\\frac{4}{11}\times 41-\frac{1}{11}\times 65\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\9\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=9
Tangohia ngā huānga poukapa x me y.
x+4y=41,4x+5y=65
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+4\times 4y=4\times 41,4x+5y=65
Kia ōrite ai a x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
4x+16y=164,4x+5y=65
Whakarūnātia.
4x-4x+16y-5y=164-65
Me tango 4x+5y=65 mai i 4x+16y=164 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
16y-5y=164-65
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=164-65
Tāpiri 16y ki te -5y.
11y=99
Tāpiri 164 ki te -65.
y=9
Whakawehea ngā taha e rua ki te 11.
4x+5\times 9=65
Whakaurua te 9 mō y ki 4x+5y=65. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+45=65
Whakareatia 5 ki te 9.
4x=20
Me tango 45 mai i ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua ki te 4.
x=5,y=9
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}