Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+4y=2,-x-3y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+4y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-4y+2
Me tango 4y mai i ngā taha e rua o te whārite.
-\left(-4y+2\right)-3y=3
Whakakapia te -4y+2 mō te x ki tērā atu whārite, -x-3y=3.
4y-2-3y=3
Whakareatia -1 ki te -4y+2.
y-2=3
Tāpiri 4y ki te -3y.
y=5
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=-4\times 5+2
Whakaurua te 5 mō y ki x=-4y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-20+2
Whakareatia -4 ki te 5.
x=-18
Tāpiri 2 ki te -20.
x=-18,y=5
Kua oti te pūnaha te whakatau.
x+4y=2,-x-3y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&4\\-1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&4\\-1&-3\end{matrix}\right))\left(\begin{matrix}1&4\\-1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&-3\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&4\\-1&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&-3\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&-3\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-4\left(-1\right)}&-\frac{4}{-3-4\left(-1\right)}\\-\frac{-1}{-3-4\left(-1\right)}&\frac{1}{-3-4\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&-4\\1&1\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 2-4\times 3\\2+3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-18\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=-18,y=5
Tangohia ngā huānga poukapa x me y.
x+4y=2,-x-3y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-x-4y=-2,-x-3y=3
Kia ōrite ai a x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-x+x-4y+3y=-2-3
Me tango -x-3y=3 mai i -x-4y=-2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y+3y=-2-3
Tāpiri -x ki te x. Ka whakakore atu ngā kupu -x me x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=-2-3
Tāpiri -4y ki te 3y.
-y=-5
Tāpiri -2 ki te -3.
y=5
Whakawehea ngā taha e rua ki te -1.
-x-3\times 5=3
Whakaurua te 5 mō y ki -x-3y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x-15=3
Whakareatia -3 ki te 5.
-x=18
Me tāpiri 15 ki ngā taha e rua o te whārite.
x=-18
Whakawehea ngā taha e rua ki te -1.
x=-18,y=5
Kua oti te pūnaha te whakatau.