Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+3y=7,3x+y=17
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+3y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-3y+7
Me tango 3y mai i ngā taha e rua o te whārite.
3\left(-3y+7\right)+y=17
Whakakapia te -3y+7 mō te x ki tērā atu whārite, 3x+y=17.
-9y+21+y=17
Whakareatia 3 ki te -3y+7.
-8y+21=17
Tāpiri -9y ki te y.
-8y=-4
Me tango 21 mai i ngā taha e rua o te whārite.
y=\frac{1}{2}
Whakawehea ngā taha e rua ki te -8.
x=-3\times \frac{1}{2}+7
Whakaurua te \frac{1}{2} mō y ki x=-3y+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{3}{2}+7
Whakareatia -3 ki te \frac{1}{2}.
x=\frac{11}{2}
Tāpiri 7 ki te -\frac{3}{2}.
x=\frac{11}{2},y=\frac{1}{2}
Kua oti te pūnaha te whakatau.
x+3y=7,3x+y=17
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&3\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\17\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&3\\3&1\end{matrix}\right))\left(\begin{matrix}1&3\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\3&1\end{matrix}\right))\left(\begin{matrix}7\\17\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&3\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\3&1\end{matrix}\right))\left(\begin{matrix}7\\17\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\3&1\end{matrix}\right))\left(\begin{matrix}7\\17\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3\times 3}&-\frac{3}{1-3\times 3}\\-\frac{3}{1-3\times 3}&\frac{1}{1-3\times 3}\end{matrix}\right)\left(\begin{matrix}7\\17\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}&\frac{3}{8}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}7\\17\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}\times 7+\frac{3}{8}\times 17\\\frac{3}{8}\times 7-\frac{1}{8}\times 17\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{2}\\\frac{1}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{11}{2},y=\frac{1}{2}
Tangohia ngā huānga poukapa x me y.
x+3y=7,3x+y=17
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+3\times 3y=3\times 7,3x+y=17
Kia ōrite ai a x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3x+9y=21,3x+y=17
Whakarūnātia.
3x-3x+9y-y=21-17
Me tango 3x+y=17 mai i 3x+9y=21 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y-y=21-17
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8y=21-17
Tāpiri 9y ki te -y.
8y=4
Tāpiri 21 ki te -17.
y=\frac{1}{2}
Whakawehea ngā taha e rua ki te 8.
3x+\frac{1}{2}=17
Whakaurua te \frac{1}{2} mō y ki 3x+y=17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=\frac{33}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
x=\frac{11}{2}
Whakawehea ngā taha e rua ki te 3.
x=\frac{11}{2},y=\frac{1}{2}
Kua oti te pūnaha te whakatau.