Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+3y=4,-2x+y=-22
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+3y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-3y+4
Me tango 3y mai i ngā taha e rua o te whārite.
-2\left(-3y+4\right)+y=-22
Whakakapia te -3y+4 mō te x ki tērā atu whārite, -2x+y=-22.
6y-8+y=-22
Whakareatia -2 ki te -3y+4.
7y-8=-22
Tāpiri 6y ki te y.
7y=-14
Me tāpiri 8 ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te 7.
x=-3\left(-2\right)+4
Whakaurua te -2 mō y ki x=-3y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=6+4
Whakareatia -3 ki te -2.
x=10
Tāpiri 4 ki te 6.
x=10,y=-2
Kua oti te pūnaha te whakatau.
x+3y=4,-2x+y=-22
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&3\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-22\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&3\\-2&1\end{matrix}\right))\left(\begin{matrix}1&3\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\-2&1\end{matrix}\right))\left(\begin{matrix}4\\-22\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&3\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\-2&1\end{matrix}\right))\left(\begin{matrix}4\\-22\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\-2&1\end{matrix}\right))\left(\begin{matrix}4\\-22\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3\left(-2\right)}&-\frac{3}{1-3\left(-2\right)}\\-\frac{-2}{1-3\left(-2\right)}&\frac{1}{1-3\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-22\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{3}{7}\\\frac{2}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}4\\-22\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 4-\frac{3}{7}\left(-22\right)\\\frac{2}{7}\times 4+\frac{1}{7}\left(-22\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=10,y=-2
Tangohia ngā huānga poukapa x me y.
x+3y=4,-2x+y=-22
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-2\times 3y=-2\times 4,-2x+y=-22
Kia ōrite ai a x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-2x-6y=-8,-2x+y=-22
Whakarūnātia.
-2x+2x-6y-y=-8+22
Me tango -2x+y=-22 mai i -2x-6y=-8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y-y=-8+22
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=-8+22
Tāpiri -6y ki te -y.
-7y=14
Tāpiri -8 ki te 22.
y=-2
Whakawehea ngā taha e rua ki te -7.
-2x-2=-22
Whakaurua te -2 mō y ki -2x+y=-22. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x=-20
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=10
Whakawehea ngā taha e rua ki te -2.
x=10,y=-2
Kua oti te pūnaha te whakatau.