Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2y=8,x-3y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+8
Me tango 2y mai i ngā taha e rua o te whārite.
-2y+8-3y=9
Whakakapia te -2y+8 mō te x ki tērā atu whārite, x-3y=9.
-5y+8=9
Tāpiri -2y ki te -3y.
-5y=1
Me tango 8 mai i ngā taha e rua o te whārite.
y=-\frac{1}{5}
Whakawehea ngā taha e rua ki te -5.
x=-2\left(-\frac{1}{5}\right)+8
Whakaurua te -\frac{1}{5} mō y ki x=-2y+8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{2}{5}+8
Whakareatia -2 ki te -\frac{1}{5}.
x=\frac{42}{5}
Tāpiri 8 ki te \frac{2}{5}.
x=\frac{42}{5},y=-\frac{1}{5}
Kua oti te pūnaha te whakatau.
x+2y=8,x-3y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}1&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\1&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-3\end{matrix}\right))\left(\begin{matrix}8\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2}&-\frac{2}{-3-2}\\-\frac{1}{-3-2}&\frac{1}{-3-2}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}8\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 8+\frac{2}{5}\times 9\\\frac{1}{5}\times 8-\frac{1}{5}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{42}{5}\\-\frac{1}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{42}{5},y=-\frac{1}{5}
Tangohia ngā huānga poukapa x me y.
x+2y=8,x-3y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+2y+3y=8-9
Me tango x-3y=9 mai i x+2y=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y+3y=8-9
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=8-9
Tāpiri 2y ki te 3y.
5y=-1
Tāpiri 8 ki te -9.
y=-\frac{1}{5}
Whakawehea ngā taha e rua ki te 5.
x-3\left(-\frac{1}{5}\right)=9
Whakaurua te -\frac{1}{5} mō y ki x-3y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+\frac{3}{5}=9
Whakareatia -3 ki te -\frac{1}{5}.
x=\frac{42}{5}
Me tango \frac{3}{5} mai i ngā taha e rua o te whārite.
x=\frac{42}{5},y=-\frac{1}{5}
Kua oti te pūnaha te whakatau.