Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2y-2x=-6
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
x+2y=6,-2x+2y=-6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+6
Me tango 2y mai i ngā taha e rua o te whārite.
-2\left(-2y+6\right)+2y=-6
Whakakapia te -2y+6 mō te x ki tērā atu whārite, -2x+2y=-6.
4y-12+2y=-6
Whakareatia -2 ki te -2y+6.
6y-12=-6
Tāpiri 4y ki te 2y.
6y=6
Me tāpiri 12 ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te 6.
x=-2+6
Whakaurua te 1 mō y ki x=-2y+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4
Tāpiri 6 ki te -2.
x=4,y=1
Kua oti te pūnaha te whakatau.
2y-2x=-6
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
x+2y=6,-2x+2y=-6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\-2&2\end{matrix}\right))\left(\begin{matrix}1&2\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&2\end{matrix}\right))\left(\begin{matrix}6\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\-2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&2\end{matrix}\right))\left(\begin{matrix}6\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&2\end{matrix}\right))\left(\begin{matrix}6\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-2\left(-2\right)}&-\frac{2}{2-2\left(-2\right)}\\-\frac{-2}{2-2\left(-2\right)}&\frac{1}{2-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}6\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{1}{3}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}6\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 6-\frac{1}{3}\left(-6\right)\\\frac{1}{3}\times 6+\frac{1}{6}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=1
Tangohia ngā huānga poukapa x me y.
2y-2x=-6
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
x+2y=6,-2x+2y=-6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x+2x+2y-2y=6+6
Me tango -2x+2y=-6 mai i x+2y=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x+2x=6+6
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3x=6+6
Tāpiri x ki te 2x.
3x=12
Tāpiri 6 ki te 6.
x=4
Whakawehea ngā taha e rua ki te 3.
-2\times 4+2y=-6
Whakaurua te 4 mō x ki -2x+2y=-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-8+2y=-6
Whakareatia -2 ki te 4.
2y=2
Me tāpiri 8 ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te 2.
x=4,y=1
Kua oti te pūnaha te whakatau.