Whakaoti mō x, y
x=-2
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-2x=7
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
x+2y=4,-2x+y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+4
Me tango 2y mai i ngā taha e rua o te whārite.
-2\left(-2y+4\right)+y=7
Whakakapia te -2y+4 mō te x ki tērā atu whārite, -2x+y=7.
4y-8+y=7
Whakareatia -2 ki te -2y+4.
5y-8=7
Tāpiri 4y ki te y.
5y=15
Me tāpiri 8 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te 5.
x=-2\times 3+4
Whakaurua te 3 mō y ki x=-2y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-6+4
Whakareatia -2 ki te 3.
x=-2
Tāpiri 4 ki te -6.
x=-2,y=3
Kua oti te pūnaha te whakatau.
y-2x=7
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
x+2y=4,-2x+y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}4\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-2\right)}&-\frac{2}{1-2\left(-2\right)}\\-\frac{-2}{1-2\left(-2\right)}&\frac{1}{1-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{2}{5}\\\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}4\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 4-\frac{2}{5}\times 7\\\frac{2}{5}\times 4+\frac{1}{5}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=3
Tangohia ngā huānga poukapa x me y.
y-2x=7
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
x+2y=4,-2x+y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-2\times 2y=-2\times 4,-2x+y=7
Kia ōrite ai a x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-2x-4y=-8,-2x+y=7
Whakarūnātia.
-2x+2x-4y-y=-8-7
Me tango -2x+y=7 mai i -2x-4y=-8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-y=-8-7
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=-8-7
Tāpiri -4y ki te -y.
-5y=-15
Tāpiri -8 ki te -7.
y=3
Whakawehea ngā taha e rua ki te -5.
-2x+3=7
Whakaurua te 3 mō y ki -2x+y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x=4
Me tango 3 mai i ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te -2.
x=-2,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}