Whakaoti mō x, y
x=-561
y=284
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+2y=7,-x-y=277
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+7
Me tango 2y mai i ngā taha e rua o te whārite.
-\left(-2y+7\right)-y=277
Whakakapia te -2y+7 mō te x ki tērā atu whārite, -x-y=277.
2y-7-y=277
Whakareatia -1 ki te -2y+7.
y-7=277
Tāpiri 2y ki te -y.
y=284
Me tāpiri 7 ki ngā taha e rua o te whārite.
x=-2\times 284+7
Whakaurua te 284 mō y ki x=-2y+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-568+7
Whakareatia -2 ki te 284.
x=-561
Tāpiri 7 ki te -568.
x=-561,y=284
Kua oti te pūnaha te whakatau.
x+2y=7,-x-y=277
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\277\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}7\\277\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\-1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}7\\277\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&-1\end{matrix}\right))\left(\begin{matrix}7\\277\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\left(-1\right)}&-\frac{2}{-1-2\left(-1\right)}\\-\frac{-1}{-1-2\left(-1\right)}&\frac{1}{-1-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}7\\277\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}7\\277\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7-2\times 277\\7+277\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-561\\284\end{matrix}\right)
Mahia ngā tātaitanga.
x=-561,y=284
Tangohia ngā huānga poukapa x me y.
x+2y=7,-x-y=277
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-x-2y=-7,-x-y=277
Kia ōrite ai a x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-x+x-2y+y=-7-277
Me tango -x-y=277 mai i -x-2y=-7 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y+y=-7-277
Tāpiri -x ki te x. Ka whakakore atu ngā kupu -x me x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=-7-277
Tāpiri -2y ki te y.
-y=-284
Tāpiri -7 ki te -277.
y=284
Whakawehea ngā taha e rua ki te -1.
-x-284=277
Whakaurua te 284 mō y ki -x-y=277. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x=561
Me tāpiri 284 ki ngā taha e rua o te whārite.
x=-561
Whakawehea ngā taha e rua ki te -1.
x=-561,y=284
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}