Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2y=3,5x-y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+3
Me tango 2y mai i ngā taha e rua o te whārite.
5\left(-2y+3\right)-y=10
Whakakapia te -2y+3 mō te x ki tērā atu whārite, 5x-y=10.
-10y+15-y=10
Whakareatia 5 ki te -2y+3.
-11y+15=10
Tāpiri -10y ki te -y.
-11y=-5
Me tango 15 mai i ngā taha e rua o te whārite.
y=\frac{5}{11}
Whakawehea ngā taha e rua ki te -11.
x=-2\times \frac{5}{11}+3
Whakaurua te \frac{5}{11} mō y ki x=-2y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{10}{11}+3
Whakareatia -2 ki te \frac{5}{11}.
x=\frac{23}{11}
Tāpiri 3 ki te -\frac{10}{11}.
x=\frac{23}{11},y=\frac{5}{11}
Kua oti te pūnaha te whakatau.
x+2y=3,5x-y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\5&-1\end{matrix}\right))\left(\begin{matrix}1&2\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\5&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\times 5}&-\frac{2}{-1-2\times 5}\\-\frac{5}{-1-2\times 5}&\frac{1}{-1-2\times 5}\end{matrix}\right)\left(\begin{matrix}3\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{2}{11}\\\frac{5}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}3\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 3+\frac{2}{11}\times 10\\\frac{5}{11}\times 3-\frac{1}{11}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{23}{11}\\\frac{5}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{23}{11},y=\frac{5}{11}
Tangohia ngā huānga poukapa x me y.
x+2y=3,5x-y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x+5\times 2y=5\times 3,5x-y=10
Kia ōrite ai a x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
5x+10y=15,5x-y=10
Whakarūnātia.
5x-5x+10y+y=15-10
Me tango 5x-y=10 mai i 5x+10y=15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10y+y=15-10
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=15-10
Tāpiri 10y ki te y.
11y=5
Tāpiri 15 ki te -10.
y=\frac{5}{11}
Whakawehea ngā taha e rua ki te 11.
5x-\frac{5}{11}=10
Whakaurua te \frac{5}{11} mō y ki 5x-y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x=\frac{115}{11}
Me tāpiri \frac{5}{11} ki ngā taha e rua o te whārite.
x=\frac{23}{11}
Whakawehea ngā taha e rua ki te 5.
x=\frac{23}{11},y=\frac{5}{11}
Kua oti te pūnaha te whakatau.