Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2y=3,2x+2y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+3
Me tango 2y mai i ngā taha e rua o te whārite.
2\left(-2y+3\right)+2y=3
Whakakapia te -2y+3 mō te x ki tērā atu whārite, 2x+2y=3.
-4y+6+2y=3
Whakareatia 2 ki te -2y+3.
-2y+6=3
Tāpiri -4y ki te 2y.
-2y=-3
Me tango 6 mai i ngā taha e rua o te whārite.
y=\frac{3}{2}
Whakawehea ngā taha e rua ki te -2.
x=-2\times \frac{3}{2}+3
Whakaurua te \frac{3}{2} mō y ki x=-2y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-3+3
Whakareatia -2 ki te \frac{3}{2}.
x=0
Tāpiri 3 ki te -3.
x=0,y=\frac{3}{2}
Kua oti te pūnaha te whakatau.
x+2y=3,2x+2y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}1&2\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&2\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-2\times 2}&-\frac{2}{2-2\times 2}\\-\frac{2}{2-2\times 2}&\frac{1}{2-2\times 2}\end{matrix}\right)\left(\begin{matrix}3\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\1&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3+3\\3-\frac{1}{2}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\\frac{3}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=\frac{3}{2}
Tangohia ngā huānga poukapa x me y.
x+2y=3,2x+2y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-2x+2y-2y=3-3
Me tango 2x+2y=3 mai i x+2y=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x-2x=3-3
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-x=3-3
Tāpiri x ki te -2x.
-x=0
Tāpiri 3 ki te -3.
x=0
Whakawehea ngā taha e rua ki te -1.
2y=3
Whakaurua te 0 mō x ki 2x+2y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{3}{2}
Whakawehea ngā taha e rua ki te 2.
x=0,y=\frac{3}{2}
Kua oti te pūnaha te whakatau.