Whakaoti mō x, y
x=3
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+2y=11,x-5y=-17
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=11
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+11
Me tango 2y mai i ngā taha e rua o te whārite.
-2y+11-5y=-17
Whakakapia te -2y+11 mō te x ki tērā atu whārite, x-5y=-17.
-7y+11=-17
Tāpiri -2y ki te -5y.
-7y=-28
Me tango 11 mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te -7.
x=-2\times 4+11
Whakaurua te 4 mō y ki x=-2y+11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-8+11
Whakareatia -2 ki te 4.
x=3
Tāpiri 11 ki te -8.
x=3,y=4
Kua oti te pūnaha te whakatau.
x+2y=11,x-5y=-17
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\-17\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\1&-5\end{matrix}\right))\left(\begin{matrix}1&2\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-5\end{matrix}\right))\left(\begin{matrix}11\\-17\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\1&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-5\end{matrix}\right))\left(\begin{matrix}11\\-17\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-5\end{matrix}\right))\left(\begin{matrix}11\\-17\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-2}&-\frac{2}{-5-2}\\-\frac{1}{-5-2}&\frac{1}{-5-2}\end{matrix}\right)\left(\begin{matrix}11\\-17\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}&\frac{2}{7}\\\frac{1}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}11\\-17\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}\times 11+\frac{2}{7}\left(-17\right)\\\frac{1}{7}\times 11-\frac{1}{7}\left(-17\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=4
Tangohia ngā huānga poukapa x me y.
x+2y=11,x-5y=-17
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+2y+5y=11+17
Me tango x-5y=-17 mai i x+2y=11 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y+5y=11+17
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7y=11+17
Tāpiri 2y ki te 5y.
7y=28
Tāpiri 11 ki te 17.
y=4
Whakawehea ngā taha e rua ki te 7.
x-5\times 4=-17
Whakaurua te 4 mō y ki x-5y=-17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-20=-17
Whakareatia -5 ki te 4.
x=3
Me tāpiri 20 ki ngā taha e rua o te whārite.
x=3,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}