Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2y=10,-2x+3y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+10
Me tango 2y mai i ngā taha e rua o te whārite.
-2\left(-2y+10\right)+3y=5
Whakakapia te -2y+10 mō te x ki tērā atu whārite, -2x+3y=5.
4y-20+3y=5
Whakareatia -2 ki te -2y+10.
7y-20=5
Tāpiri 4y ki te 3y.
7y=25
Me tāpiri 20 ki ngā taha e rua o te whārite.
y=\frac{25}{7}
Whakawehea ngā taha e rua ki te 7.
x=-2\times \frac{25}{7}+10
Whakaurua te \frac{25}{7} mō y ki x=-2y+10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{50}{7}+10
Whakareatia -2 ki te \frac{25}{7}.
x=\frac{20}{7}
Tāpiri 10 ki te -\frac{50}{7}.
x=\frac{20}{7},y=\frac{25}{7}
Kua oti te pūnaha te whakatau.
x+2y=10,-2x+3y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\-2&3\end{matrix}\right))\left(\begin{matrix}1&2\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&3\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\-2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&3\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&3\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\left(-2\right)}&-\frac{2}{3-2\left(-2\right)}\\-\frac{-2}{3-2\left(-2\right)}&\frac{1}{3-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&-\frac{2}{7}\\\frac{2}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\times 10-\frac{2}{7}\times 5\\\frac{2}{7}\times 10+\frac{1}{7}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{7}\\\frac{25}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{20}{7},y=\frac{25}{7}
Tangohia ngā huānga poukapa x me y.
x+2y=10,-2x+3y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-2\times 2y=-2\times 10,-2x+3y=5
Kia ōrite ai a x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-2x-4y=-20,-2x+3y=5
Whakarūnātia.
-2x+2x-4y-3y=-20-5
Me tango -2x+3y=5 mai i -2x-4y=-20 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-3y=-20-5
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=-20-5
Tāpiri -4y ki te -3y.
-7y=-25
Tāpiri -20 ki te -5.
y=\frac{25}{7}
Whakawehea ngā taha e rua ki te -7.
-2x+3\times \frac{25}{7}=5
Whakaurua te \frac{25}{7} mō y ki -2x+3y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x+\frac{75}{7}=5
Whakareatia 3 ki te \frac{25}{7}.
-2x=-\frac{40}{7}
Me tango \frac{75}{7} mai i ngā taha e rua o te whārite.
x=\frac{20}{7}
Whakawehea ngā taha e rua ki te -2.
x=\frac{20}{7},y=\frac{25}{7}
Kua oti te pūnaha te whakatau.