Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-4x=-5
Whakaarohia te whārite tuarua. Tangohia te 4x mai i ngā taha e rua.
x+2y=1,-4x+y=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+1
Me tango 2y mai i ngā taha e rua o te whārite.
-4\left(-2y+1\right)+y=-5
Whakakapia te -2y+1 mō te x ki tērā atu whārite, -4x+y=-5.
8y-4+y=-5
Whakareatia -4 ki te -2y+1.
9y-4=-5
Tāpiri 8y ki te y.
9y=-1
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=-\frac{1}{9}
Whakawehea ngā taha e rua ki te 9.
x=-2\left(-\frac{1}{9}\right)+1
Whakaurua te -\frac{1}{9} mō y ki x=-2y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{2}{9}+1
Whakareatia -2 ki te -\frac{1}{9}.
x=\frac{11}{9}
Tāpiri 1 ki te \frac{2}{9}.
x=\frac{11}{9},y=-\frac{1}{9}
Kua oti te pūnaha te whakatau.
y-4x=-5
Whakaarohia te whārite tuarua. Tangohia te 4x mai i ngā taha e rua.
x+2y=1,-4x+y=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\-4&1\end{matrix}\right))\left(\begin{matrix}1&2\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-4&1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\-4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-4&1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-4&1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-4\right)}&-\frac{2}{1-2\left(-4\right)}\\-\frac{-4}{1-2\left(-4\right)}&\frac{1}{1-2\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&-\frac{2}{9}\\\frac{4}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}-\frac{2}{9}\left(-5\right)\\\frac{4}{9}+\frac{1}{9}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{9}\\-\frac{1}{9}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{11}{9},y=-\frac{1}{9}
Tangohia ngā huānga poukapa x me y.
y-4x=-5
Whakaarohia te whārite tuarua. Tangohia te 4x mai i ngā taha e rua.
x+2y=1,-4x+y=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4x-4\times 2y=-4,-4x+y=-5
Kia ōrite ai a x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-4x-8y=-4,-4x+y=-5
Whakarūnātia.
-4x+4x-8y-y=-4+5
Me tango -4x+y=-5 mai i -4x-8y=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y-y=-4+5
Tāpiri -4x ki te 4x. Ka whakakore atu ngā kupu -4x me 4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-9y=-4+5
Tāpiri -8y ki te -y.
-9y=1
Tāpiri -4 ki te 5.
y=-\frac{1}{9}
Whakawehea ngā taha e rua ki te -9.
-4x-\frac{1}{9}=-5
Whakaurua te -\frac{1}{9} mō y ki -4x+y=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x=-\frac{44}{9}
Me tāpiri \frac{1}{9} ki ngā taha e rua o te whārite.
x=\frac{11}{9}
Whakawehea ngā taha e rua ki te -4.
x=\frac{11}{9},y=-\frac{1}{9}
Kua oti te pūnaha te whakatau.