Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2y=1,3x+y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+1
Me tango 2y mai i ngā taha e rua o te whārite.
3\left(-2y+1\right)+y=0
Whakakapia te -2y+1 mō te x ki tērā atu whārite, 3x+y=0.
-6y+3+y=0
Whakareatia 3 ki te -2y+1.
-5y+3=0
Tāpiri -6y ki te y.
-5y=-3
Me tango 3 mai i ngā taha e rua o te whārite.
y=\frac{3}{5}
Whakawehea ngā taha e rua ki te -5.
x=-2\times \frac{3}{5}+1
Whakaurua te \frac{3}{5} mō y ki x=-2y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{6}{5}+1
Whakareatia -2 ki te \frac{3}{5}.
x=-\frac{1}{5}
Tāpiri 1 ki te -\frac{6}{5}.
x=-\frac{1}{5},y=\frac{3}{5}
Kua oti te pūnaha te whakatau.
x+2y=1,3x+y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\3&1\end{matrix}\right))\left(\begin{matrix}1&2\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\times 3}&-\frac{2}{1-2\times 3}\\-\frac{3}{1-2\times 3}&\frac{1}{1-2\times 3}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\\frac{3}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\\\frac{3}{5}\end{matrix}\right)
Whakareatia ngā poukapa.
x=-\frac{1}{5},y=\frac{3}{5}
Tangohia ngā huānga poukapa x me y.
x+2y=1,3x+y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+3\times 2y=3,3x+y=0
Kia ōrite ai a x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3x+6y=3,3x+y=0
Whakarūnātia.
3x-3x+6y-y=3
Me tango 3x+y=0 mai i 3x+6y=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-y=3
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=3
Tāpiri 6y ki te -y.
y=\frac{3}{5}
Whakawehea ngā taha e rua ki te 5.
3x+\frac{3}{5}=0
Whakaurua te \frac{3}{5} mō y ki 3x+y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=-\frac{3}{5}
Me tango \frac{3}{5} mai i ngā taha e rua o te whārite.
x=-\frac{1}{5}
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{5},y=\frac{3}{5}
Kua oti te pūnaha te whakatau.