Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2y=1,-2x+y=-4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+1
Me tango 2y mai i ngā taha e rua o te whārite.
-2\left(-2y+1\right)+y=-4
Whakakapia te -2y+1 mō te x ki tērā atu whārite, -2x+y=-4.
4y-2+y=-4
Whakareatia -2 ki te -2y+1.
5y-2=-4
Tāpiri 4y ki te y.
5y=-2
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=-\frac{2}{5}
Whakawehea ngā taha e rua ki te 5.
x=-2\left(-\frac{2}{5}\right)+1
Whakaurua te -\frac{2}{5} mō y ki x=-2y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4}{5}+1
Whakareatia -2 ki te -\frac{2}{5}.
x=\frac{9}{5}
Tāpiri 1 ki te \frac{4}{5}.
x=\frac{9}{5},y=-\frac{2}{5}
Kua oti te pūnaha te whakatau.
x+2y=1,-2x+y=-4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-2\right)}&-\frac{2}{1-2\left(-2\right)}\\-\frac{-2}{1-2\left(-2\right)}&\frac{1}{1-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{2}{5}\\\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}-\frac{2}{5}\left(-4\right)\\\frac{2}{5}+\frac{1}{5}\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5}\\-\frac{2}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{9}{5},y=-\frac{2}{5}
Tangohia ngā huānga poukapa x me y.
x+2y=1,-2x+y=-4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-2\times 2y=-2,-2x+y=-4
Kia ōrite ai a x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-2x-4y=-2,-2x+y=-4
Whakarūnātia.
-2x+2x-4y-y=-2+4
Me tango -2x+y=-4 mai i -2x-4y=-2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-y=-2+4
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=-2+4
Tāpiri -4y ki te -y.
-5y=2
Tāpiri -2 ki te 4.
y=-\frac{2}{5}
Whakawehea ngā taha e rua ki te -5.
-2x-\frac{2}{5}=-4
Whakaurua te -\frac{2}{5} mō y ki -2x+y=-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x=-\frac{18}{5}
Me tāpiri \frac{2}{5} ki ngā taha e rua o te whārite.
x=\frac{9}{5}
Whakawehea ngā taha e rua ki te -2.
x=\frac{9}{5},y=-\frac{2}{5}
Kua oti te pūnaha te whakatau.