Whakaoti mō x, y
x=2
y=-5
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+\frac{3}{2}x=-2
Whakaarohia te whārite tuarua. Me tāpiri te \frac{3}{2}x ki ngā taha e rua.
x+2y=-8,\frac{3}{2}x+y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=-8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y-8
Me tango 2y mai i ngā taha e rua o te whārite.
\frac{3}{2}\left(-2y-8\right)+y=-2
Whakakapia te -2y-8 mō te x ki tērā atu whārite, \frac{3}{2}x+y=-2.
-3y-12+y=-2
Whakareatia \frac{3}{2} ki te -2y-8.
-2y-12=-2
Tāpiri -3y ki te y.
-2y=10
Me tāpiri 12 ki ngā taha e rua o te whārite.
y=-5
Whakawehea ngā taha e rua ki te -2.
x=-2\left(-5\right)-8
Whakaurua te -5 mō y ki x=-2y-8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=10-8
Whakareatia -2 ki te -5.
x=2
Tāpiri -8 ki te 10.
x=2,y=-5
Kua oti te pūnaha te whakatau.
y+\frac{3}{2}x=-2
Whakaarohia te whārite tuarua. Me tāpiri te \frac{3}{2}x ki ngā taha e rua.
x+2y=-8,\frac{3}{2}x+y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right))\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\\frac{3}{2}&1\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\times \frac{3}{2}}&-\frac{2}{1-2\times \frac{3}{2}}\\-\frac{\frac{3}{2}}{1-2\times \frac{3}{2}}&\frac{1}{1-2\times \frac{3}{2}}\end{matrix}\right)\left(\begin{matrix}-8\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&1\\\frac{3}{4}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-8\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-8\right)-2\\\frac{3}{4}\left(-8\right)-\frac{1}{2}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=-5
Tangohia ngā huānga poukapa x me y.
y+\frac{3}{2}x=-2
Whakaarohia te whārite tuarua. Me tāpiri te \frac{3}{2}x ki ngā taha e rua.
x+2y=-8,\frac{3}{2}x+y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{3}{2}x+\frac{3}{2}\times 2y=\frac{3}{2}\left(-8\right),\frac{3}{2}x+y=-2
Kia ōrite ai a x me \frac{3x}{2}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{3}{2} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
\frac{3}{2}x+3y=-12,\frac{3}{2}x+y=-2
Whakarūnātia.
\frac{3}{2}x-\frac{3}{2}x+3y-y=-12+2
Me tango \frac{3}{2}x+y=-2 mai i \frac{3}{2}x+3y=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-y=-12+2
Tāpiri \frac{3x}{2} ki te -\frac{3x}{2}. Ka whakakore atu ngā kupu \frac{3x}{2} me -\frac{3x}{2}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=-12+2
Tāpiri 3y ki te -y.
2y=-10
Tāpiri -12 ki te 2.
y=-5
Whakawehea ngā taha e rua ki te 2.
\frac{3}{2}x-5=-2
Whakaurua te -5 mō y ki \frac{3}{2}x+y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{3}{2}x=3
Me tāpiri 5 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=2,y=-5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}