Whakaoti mō x, y
x=1
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+2y+3=0,4x+5y+6=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y+3=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x+2y=-3
Me tango 3 mai i ngā taha e rua o te whārite.
x=-2y-3
Me tango 2y mai i ngā taha e rua o te whārite.
4\left(-2y-3\right)+5y+6=0
Whakakapia te -2y-3 mō te x ki tērā atu whārite, 4x+5y+6=0.
-8y-12+5y+6=0
Whakareatia 4 ki te -2y-3.
-3y-12+6=0
Tāpiri -8y ki te 5y.
-3y-6=0
Tāpiri -12 ki te 6.
-3y=6
Me tāpiri 6 ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te -3.
x=-2\left(-2\right)-3
Whakaurua te -2 mō y ki x=-2y-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4-3
Whakareatia -2 ki te -2.
x=1
Tāpiri -3 ki te 4.
x=1,y=-2
Kua oti te pūnaha te whakatau.
x+2y+3=0,4x+5y+6=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\4&5\end{matrix}\right))\left(\begin{matrix}1&2\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&5\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&5\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&5\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-2\times 4}&-\frac{2}{5-2\times 4}\\-\frac{4}{5-2\times 4}&\frac{1}{5-2\times 4}\end{matrix}\right)\left(\begin{matrix}-3\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3}&\frac{2}{3}\\\frac{4}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-3\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3}\left(-3\right)+\frac{2}{3}\left(-6\right)\\\frac{4}{3}\left(-3\right)-\frac{1}{3}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-2
Tangohia ngā huānga poukapa x me y.
x+2y+3=0,4x+5y+6=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+4\times 2y+4\times 3=0,4x+5y+6=0
Kia ōrite ai a x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
4x+8y+12=0,4x+5y+6=0
Whakarūnātia.
4x-4x+8y-5y+12-6=0
Me tango 4x+5y+6=0 mai i 4x+8y+12=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y-5y+12-6=0
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y+12-6=0
Tāpiri 8y ki te -5y.
3y+6=0
Tāpiri 12 ki te -6.
3y=-6
Me tango 6 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te 3.
4x+5\left(-2\right)+6=0
Whakaurua te -2 mō y ki 4x+5y+6=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-10+6=0
Whakareatia 5 ki te -2.
4x-4=0
Tāpiri -10 ki te 6.
4x=4
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 4.
x=1,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}