Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+1.5y=12,x+3.5y=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+1.5y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-1.5y+12
Me tango \frac{3y}{2} mai i ngā taha e rua o te whārite.
-1.5y+12+3.5y=16
Whakakapia te -\frac{3y}{2}+12 mō te x ki tērā atu whārite, x+3.5y=16.
2y+12=16
Tāpiri -\frac{3y}{2} ki te \frac{7y}{2}.
2y=4
Me tango 12 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te 2.
x=-1.5\times 2+12
Whakaurua te 2 mō y ki x=-1.5y+12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-3+12
Whakareatia -1.5 ki te 2.
x=9
Tāpiri 12 ki te -3.
x=9,y=2
Kua oti te pūnaha te whakatau.
x+1.5y=12,x+3.5y=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1.5\\1&3.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1.5\\1&3.5\end{matrix}\right))\left(\begin{matrix}1&1.5\\1&3.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1.5\\1&3.5\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1.5\\1&3.5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1.5\\1&3.5\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1.5\\1&3.5\end{matrix}\right))\left(\begin{matrix}12\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3.5}{3.5-1.5}&-\frac{1.5}{3.5-1.5}\\-\frac{1}{3.5-1.5}&\frac{1}{3.5-1.5}\end{matrix}\right)\left(\begin{matrix}12\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{4}&-\frac{3}{4}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}12\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{4}\times 12-\frac{3}{4}\times 16\\-\frac{1}{2}\times 12+\frac{1}{2}\times 16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=9,y=2
Tangohia ngā huānga poukapa x me y.
x+1.5y=12,x+3.5y=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+1.5y-3.5y=12-16
Me tango x+3.5y=16 mai i x+1.5y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
1.5y-3.5y=12-16
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2y=12-16
Tāpiri \frac{3y}{2} ki te -\frac{7y}{2}.
-2y=-4
Tāpiri 12 ki te -16.
y=2
Whakawehea ngā taha e rua ki te -2.
x+3.5\times 2=16
Whakaurua te 2 mō y ki x+3.5y=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+7=16
Whakareatia 3.5 ki te 2.
x=9
Me tango 7 mai i ngā taha e rua o te whārite.
x=9,y=2
Kua oti te pūnaha te whakatau.