Whakaoti mō t, s
t=-7
s=3
Tohaina
Kua tāruatia ki te papatopenga
s-t=10
Whakaarohia te whārite tuarua. Tangohia te t mai i ngā taha e rua.
t+2s=-1,-t+s=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
t+2s=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te t mā te wehe i te t i te taha mauī o te tohu ōrite.
t=-2s-1
Me tango 2s mai i ngā taha e rua o te whārite.
-\left(-2s-1\right)+s=10
Whakakapia te -2s-1 mō te t ki tērā atu whārite, -t+s=10.
2s+1+s=10
Whakareatia -1 ki te -2s-1.
3s+1=10
Tāpiri 2s ki te s.
3s=9
Me tango 1 mai i ngā taha e rua o te whārite.
s=3
Whakawehea ngā taha e rua ki te 3.
t=-2\times 3-1
Whakaurua te 3 mō s ki t=-2s-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō t hāngai tonu.
t=-6-1
Whakareatia -2 ki te 3.
t=-7
Tāpiri -1 ki te -6.
t=-7,s=3
Kua oti te pūnaha te whakatau.
s-t=10
Whakaarohia te whārite tuarua. Tangohia te t mai i ngā taha e rua.
t+2s=-1,-t+s=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}t\\s\end{matrix}\right)=\left(\begin{matrix}-1\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}1&2\\-1&1\end{matrix}\right)\left(\begin{matrix}t\\s\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}-1\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}t\\s\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}-1\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}t\\s\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-1&1\end{matrix}\right))\left(\begin{matrix}-1\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}t\\s\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-1\right)}&-\frac{2}{1-2\left(-1\right)}\\-\frac{-1}{1-2\left(-1\right)}&\frac{1}{1-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-1\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}t\\s\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{2}{3}\\\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-1\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}t\\s\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-1\right)-\frac{2}{3}\times 10\\\frac{1}{3}\left(-1\right)+\frac{1}{3}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}t\\s\end{matrix}\right)=\left(\begin{matrix}-7\\3\end{matrix}\right)
Mahia ngā tātaitanga.
t=-7,s=3
Tangohia ngā huānga poukapa t me s.
s-t=10
Whakaarohia te whārite tuarua. Tangohia te t mai i ngā taha e rua.
t+2s=-1,-t+s=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-t-2s=-\left(-1\right),-t+s=10
Kia ōrite ai a t me -t, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-t-2s=1,-t+s=10
Whakarūnātia.
-t+t-2s-s=1-10
Me tango -t+s=10 mai i -t-2s=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2s-s=1-10
Tāpiri -t ki te t. Ka whakakore atu ngā kupu -t me t, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3s=1-10
Tāpiri -2s ki te -s.
-3s=-9
Tāpiri 1 ki te -10.
s=3
Whakawehea ngā taha e rua ki te -3.
-t+3=10
Whakaurua te 3 mō s ki -t+s=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō t hāngai tonu.
-t=7
Me tango 3 mai i ngā taha e rua o te whārite.
t=-7
Whakawehea ngā taha e rua ki te -1.
t=-7,s=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}