Tīpoka ki ngā ihirangi matua
Whakaoti mō s, t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

s-t=3,\frac{1}{3}s+\frac{1}{2}t=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
s-t=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te s mā te wehe i te s i te taha mauī o te tohu ōrite.
s=t+3
Me tāpiri t ki ngā taha e rua o te whārite.
\frac{1}{3}\left(t+3\right)+\frac{1}{2}t=6
Whakakapia te t+3 mō te s ki tērā atu whārite, \frac{1}{3}s+\frac{1}{2}t=6.
\frac{1}{3}t+1+\frac{1}{2}t=6
Whakareatia \frac{1}{3} ki te t+3.
\frac{5}{6}t+1=6
Tāpiri \frac{t}{3} ki te \frac{t}{2}.
\frac{5}{6}t=5
Me tango 1 mai i ngā taha e rua o te whārite.
t=6
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{6}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
s=6+3
Whakaurua te 6 mō t ki s=t+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō s hāngai tonu.
s=9
Tāpiri 3 ki te 6.
s=9,t=6
Kua oti te pūnaha te whakatau.
s-t=3,\frac{1}{3}s+\frac{1}{2}t=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1&-1\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}s\\t\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}s\\t\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}s\\t\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{\frac{1}{2}-\left(-\frac{1}{3}\right)}&-\frac{-1}{\frac{1}{2}-\left(-\frac{1}{3}\right)}\\-\frac{\frac{1}{3}}{\frac{1}{2}-\left(-\frac{1}{3}\right)}&\frac{1}{\frac{1}{2}-\left(-\frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{6}{5}\\-\frac{2}{5}&\frac{6}{5}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 3+\frac{6}{5}\times 6\\-\frac{2}{5}\times 3+\frac{6}{5}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}s\\t\end{matrix}\right)=\left(\begin{matrix}9\\6\end{matrix}\right)
Mahia ngā tātaitanga.
s=9,t=6
Tangohia ngā huānga poukapa s me t.
s-t=3,\frac{1}{3}s+\frac{1}{2}t=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{3}s+\frac{1}{3}\left(-1\right)t=\frac{1}{3}\times 3,\frac{1}{3}s+\frac{1}{2}t=6
Kia ōrite ai a s me \frac{s}{3}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{1}{3} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
\frac{1}{3}s-\frac{1}{3}t=1,\frac{1}{3}s+\frac{1}{2}t=6
Whakarūnātia.
\frac{1}{3}s-\frac{1}{3}s-\frac{1}{3}t-\frac{1}{2}t=1-6
Me tango \frac{1}{3}s+\frac{1}{2}t=6 mai i \frac{1}{3}s-\frac{1}{3}t=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-\frac{1}{3}t-\frac{1}{2}t=1-6
Tāpiri \frac{s}{3} ki te -\frac{s}{3}. Ka whakakore atu ngā kupu \frac{s}{3} me -\frac{s}{3}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{5}{6}t=1-6
Tāpiri -\frac{t}{3} ki te -\frac{t}{2}.
-\frac{5}{6}t=-5
Tāpiri 1 ki te -6.
t=6
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{6}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\frac{1}{3}s+\frac{1}{2}\times 6=6
Whakaurua te 6 mō t ki \frac{1}{3}s+\frac{1}{2}t=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō s hāngai tonu.
\frac{1}{3}s+3=6
Whakareatia \frac{1}{2} ki te 6.
\frac{1}{3}s=3
Me tango 3 mai i ngā taha e rua o te whārite.
s=9
Me whakarea ngā taha e rua ki te 3.
s=9,t=6
Kua oti te pūnaha te whakatau.